ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znzrh Unicode version

Theorem znzrh 14480
Description: The  ZZ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval2.s  |-  S  =  (RSpan ` ring )
znval2.u  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
znval2.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znzrh  |-  ( N  e.  NN0  ->  ( ZRHom `  U )  =  ( ZRHom `  Y )
)

Proof of Theorem znzrh
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2207 . 2  |-  ( N  e.  NN0  ->  ( Base `  U )  =  (
Base `  U )
)
2 znval2.s . . 3  |-  S  =  (RSpan ` ring )
3 znval2.u . . 3  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
4 znval2.y . . 3  |-  Y  =  (ℤ/n `  N )
52, 3, 4znbas2 14477 . 2  |-  ( N  e.  NN0  ->  ( Base `  U )  =  (
Base `  Y )
)
62, 3, 4znadd 14478 . . 3  |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
76oveqdr 5985 . 2  |-  ( ( N  e.  NN0  /\  ( x  e.  ( Base `  U )  /\  y  e.  ( Base `  U ) ) )  ->  ( x ( +g  `  U ) y )  =  ( x ( +g  `  Y
) y ) )
82, 3, 4znmul 14479 . . 3  |-  ( N  e.  NN0  ->  ( .r
`  U )  =  ( .r `  Y
) )
98oveqdr 5985 . 2  |-  ( ( N  e.  NN0  /\  ( x  e.  ( Base `  U )  /\  y  e.  ( Base `  U ) ) )  ->  ( x ( .r `  U ) y )  =  ( x ( .r `  Y ) y ) )
101, 5, 7, 9zrhpropd 14463 1  |-  ( N  e.  NN0  ->  ( ZRHom `  U )  =  ( ZRHom `  Y )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {csn 3638   ` cfv 5280  (class class class)co 5957   NN0cn0 9315   Basecbs 12907   +g cplusg 12984   .rcmulr 12985    /.s cqus 13207   ~QG cqg 13580  RSpancrsp 14305  ℤringczring 14427   ZRHomczrh 14448  ℤ/nczn 14450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-ec 6635  df-map 6750  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-dec 9525  df-uz 9669  df-rp 9796  df-fz 10151  df-cj 11228  df-abs 11385  df-struct 12909  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-starv 12999  df-sca 13000  df-vsca 13001  df-ip 13002  df-tset 13003  df-ple 13004  df-ds 13006  df-unif 13007  df-0g 13165  df-topgen 13167  df-iimas 13209  df-qus 13210  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-mhm 13366  df-grp 13410  df-minusg 13411  df-subg 13581  df-eqg 13583  df-ghm 13652  df-cmn 13697  df-mgp 13758  df-ur 13797  df-ring 13835  df-cring 13836  df-rhm 13989  df-subrg 14056  df-lsp 14224  df-sra 14272  df-rgmod 14273  df-rsp 14307  df-bl 14383  df-mopn 14384  df-fg 14386  df-metu 14387  df-cnfld 14394  df-zring 14428  df-zrh 14451  df-zn 14453
This theorem is referenced by:  znzrh2  14483  znle2  14489
  Copyright terms: Public domain W3C validator