| Step | Hyp | Ref
| Expression |
| 1 | | expclzaplem 10655 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 2 | 1 | 3expa 1205 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℤ) → (𝐴↑𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 3 | 2 | fmpttd 5717 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶{𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 4 | | expaddzap 10675 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴↑(𝑢 + 𝑣)) = ((𝐴↑𝑢) · (𝐴↑𝑣))) |
| 5 | | eqid 2196 |
. . . . . 6
⊢ (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) |
| 6 | | oveq2 5930 |
. . . . . 6
⊢ (𝑥 = (𝑢 + 𝑣) → (𝐴↑𝑥) = (𝐴↑(𝑢 + 𝑣))) |
| 7 | | zaddcl 9366 |
. . . . . . 7
⊢ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑢 + 𝑣) ∈ ℤ) |
| 8 | 7 | adantl 277 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑢 + 𝑣) ∈ ℤ) |
| 9 | | simpll 527 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝐴 ∈ ℂ) |
| 10 | | simplr 528 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝐴 # 0) |
| 11 | 9, 10, 8 | expclzapd 10770 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴↑(𝑢 + 𝑣)) ∈ ℂ) |
| 12 | 5, 6, 8, 11 | fvmptd3 5655 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (𝐴↑(𝑢 + 𝑣))) |
| 13 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → (𝐴↑𝑥) = (𝐴↑𝑢)) |
| 14 | | simprl 529 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑢 ∈ ℤ) |
| 15 | 9, 10, 14 | expclzapd 10770 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴↑𝑢) ∈ ℂ) |
| 16 | 5, 13, 14, 15 | fvmptd3 5655 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) = (𝐴↑𝑢)) |
| 17 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (𝐴↑𝑥) = (𝐴↑𝑣)) |
| 18 | | simprr 531 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑣 ∈ ℤ) |
| 19 | 9, 10, 18 | expclzapd 10770 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴↑𝑣) ∈ ℂ) |
| 20 | 5, 17, 18, 19 | fvmptd3 5655 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣) = (𝐴↑𝑣)) |
| 21 | 16, 20 | oveq12d 5940 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) = ((𝐴↑𝑢) · (𝐴↑𝑣))) |
| 22 | 4, 12, 21 | 3eqtr4d 2239 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))) |
| 23 | 22 | ralrimivva 2579 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))) |
| 24 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → 𝑢 ∈ ℤ) |
| 25 | 15 | anassrs 400 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (𝐴↑𝑢) ∈ ℂ) |
| 26 | 5, 13, 24, 25 | fvmptd3 5655 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) = (𝐴↑𝑢)) |
| 27 | 26, 25 | eqeltrd 2273 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) ∈ ℂ) |
| 28 | | simpr 110 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → 𝑣 ∈ ℤ) |
| 29 | 19 | anassrs 400 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (𝐴↑𝑣) ∈ ℂ) |
| 30 | 5, 17, 28, 29 | fvmptd3 5655 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣) = (𝐴↑𝑣)) |
| 31 | 30, 29 | eqeltrd 2273 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣) ∈ ℂ) |
| 32 | 27, 31 | mulcld 8047 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) ∈ ℂ) |
| 33 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑟 = ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) → (𝑟 · 𝑠) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · 𝑠)) |
| 34 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑠 = ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · 𝑠) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))) |
| 35 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) |
| 36 | 33, 34, 35 | ovmpog 6057 |
. . . . . . 7
⊢ ((((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) ∈ ℂ ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣) ∈ ℂ ∧ (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) ∈ ℂ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))) |
| 37 | 27, 31, 32, 36 | syl3anc 1249 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))) |
| 38 | 37 | eqeq2d 2208 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)))) |
| 39 | 38 | ralbidva 2493 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) → (∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) ↔ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)))) |
| 40 | 39 | ralbidva 2493 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)) ↔ ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)))) |
| 41 | 23, 40 | mpbird 167 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))) |
| 42 | | zringgrp 14151 |
. . . 4
⊢
ℤring ∈ Grp |
| 43 | | cnring 14126 |
. . . . 5
⊢
ℂfld ∈ Ring |
| 44 | | cnfldui 14145 |
. . . . . 6
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} =
(Unit‘ℂfld) |
| 45 | | expghmap.u |
. . . . . . 7
⊢ 𝑈 = (𝑀 ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 46 | | expghm.m |
. . . . . . . 8
⊢ 𝑀 =
(mulGrp‘ℂfld) |
| 47 | 46 | oveq1i 5932 |
. . . . . . 7
⊢ (𝑀 ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) =
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 48 | 45, 47 | eqtri 2217 |
. . . . . 6
⊢ 𝑈 =
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 49 | 44, 48 | unitgrp 13672 |
. . . . 5
⊢
(ℂfld ∈ Ring → 𝑈 ∈ Grp) |
| 50 | 43, 49 | ax-mp 5 |
. . . 4
⊢ 𝑈 ∈ Grp |
| 51 | 42, 50 | pm3.2i 272 |
. . 3
⊢
(ℤring ∈ Grp ∧ 𝑈 ∈ Grp) |
| 52 | | zringbas 14152 |
. . . 4
⊢ ℤ =
(Base‘ℤring) |
| 53 | 45 | a1i 9 |
. . . . . 6
⊢ (⊤
→ 𝑈 = (𝑀 ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0})) |
| 54 | | cnfldbas 14116 |
. . . . . . . 8
⊢ ℂ =
(Base‘ℂfld) |
| 55 | 46, 54 | mgpbasg 13482 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → ℂ = (Base‘𝑀)) |
| 56 | 43, 55 | mp1i 10 |
. . . . . 6
⊢ (⊤
→ ℂ = (Base‘𝑀)) |
| 57 | 46 | mgpex 13481 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → 𝑀 ∈ V) |
| 58 | 43, 57 | mp1i 10 |
. . . . . 6
⊢ (⊤
→ 𝑀 ∈
V) |
| 59 | | apsscn 8674 |
. . . . . . 7
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆
ℂ |
| 60 | 59 | a1i 9 |
. . . . . 6
⊢ (⊤
→ {𝑧 ∈ ℂ
∣ 𝑧 # 0} ⊆
ℂ) |
| 61 | 53, 56, 58, 60 | ressbas2d 12746 |
. . . . 5
⊢ (⊤
→ {𝑧 ∈ ℂ
∣ 𝑧 # 0} =
(Base‘𝑈)) |
| 62 | 61 | mptru 1373 |
. . . 4
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Base‘𝑈) |
| 63 | | zringplusg 14153 |
. . . 4
⊢ + =
(+g‘ℤring) |
| 64 | | mpocnfldmul 14119 |
. . . . . . . 8
⊢ (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) =
(.r‘ℂfld) |
| 65 | 46, 64 | mgpplusgg 13480 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (+g‘𝑀)) |
| 66 | 43, 65 | mp1i 10 |
. . . . . 6
⊢ (⊤
→ (𝑟 ∈ ℂ,
𝑠 ∈ ℂ ↦
(𝑟 · 𝑠)) = (+g‘𝑀)) |
| 67 | | cnex 8003 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 68 | 67 | rabex 4177 |
. . . . . . 7
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈ V |
| 69 | 68 | a1i 9 |
. . . . . 6
⊢ (⊤
→ {𝑧 ∈ ℂ
∣ 𝑧 # 0} ∈
V) |
| 70 | 53, 66, 69, 58 | ressplusgd 12806 |
. . . . 5
⊢ (⊤
→ (𝑟 ∈ ℂ,
𝑠 ∈ ℂ ↦
(𝑟 · 𝑠)) = (+g‘𝑈)) |
| 71 | 70 | mptru 1373 |
. . . 4
⊢ (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (+g‘𝑈) |
| 72 | 52, 62, 63, 71 | isghm 13373 |
. . 3
⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom
𝑈) ↔
((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶{𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣))))) |
| 73 | 51, 72 | mpbiran 942 |
. 2
⊢ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom
𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥)):ℤ⟶{𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴↑𝑥))‘𝑣)))) |
| 74 | 3, 41, 73 | sylanbrc 417 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom
𝑈)) |