ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expghmap GIF version

Theorem expghmap 14163
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
Hypotheses
Ref Expression
expghm.m 𝑀 = (mulGrp‘ℂfld)
expghmap.u 𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0})
Assertion
Ref Expression
expghmap ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Distinct variable group:   𝑥,𝐴,𝑧
Allowed substitution hints:   𝑈(𝑥,𝑧)   𝑀(𝑥,𝑧)

Proof of Theorem expghmap
Dummy variables 𝑟 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzaplem 10655 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
213expa 1205 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
32fmpttd 5717 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶{𝑧 ∈ ℂ ∣ 𝑧 # 0})
4 expaddzap 10675 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴↑(𝑢 + 𝑣)) = ((𝐴𝑢) · (𝐴𝑣)))
5 eqid 2196 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝐴𝑥)) = (𝑥 ∈ ℤ ↦ (𝐴𝑥))
6 oveq2 5930 . . . . . 6 (𝑥 = (𝑢 + 𝑣) → (𝐴𝑥) = (𝐴↑(𝑢 + 𝑣)))
7 zaddcl 9366 . . . . . . 7 ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑢 + 𝑣) ∈ ℤ)
87adantl 277 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑢 + 𝑣) ∈ ℤ)
9 simpll 527 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝐴 ∈ ℂ)
10 simplr 528 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝐴 # 0)
119, 10, 8expclzapd 10770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴↑(𝑢 + 𝑣)) ∈ ℂ)
125, 6, 8, 11fvmptd3 5655 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (𝐴↑(𝑢 + 𝑣)))
13 oveq2 5930 . . . . . . 7 (𝑥 = 𝑢 → (𝐴𝑥) = (𝐴𝑢))
14 simprl 529 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑢 ∈ ℤ)
159, 10, 14expclzapd 10770 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴𝑢) ∈ ℂ)
165, 13, 14, 15fvmptd3 5655 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) = (𝐴𝑢))
17 oveq2 5930 . . . . . . 7 (𝑥 = 𝑣 → (𝐴𝑥) = (𝐴𝑣))
18 simprr 531 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → 𝑣 ∈ ℤ)
199, 10, 18expclzapd 10770 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐴𝑣) ∈ ℂ)
205, 17, 18, 19fvmptd3 5655 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣) = (𝐴𝑣))
2116, 20oveq12d 5940 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) = ((𝐴𝑢) · (𝐴𝑣)))
224, 12, 213eqtr4d 2239 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))
2322ralrimivva 2579 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))
24 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → 𝑢 ∈ ℤ)
2515anassrs 400 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (𝐴𝑢) ∈ ℂ)
265, 13, 24, 25fvmptd3 5655 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) = (𝐴𝑢))
2726, 25eqeltrd 2273 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) ∈ ℂ)
28 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → 𝑣 ∈ ℤ)
2919anassrs 400 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (𝐴𝑣) ∈ ℂ)
305, 17, 28, 29fvmptd3 5655 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣) = (𝐴𝑣))
3130, 29eqeltrd 2273 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣) ∈ ℂ)
3227, 31mulcld 8047 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) ∈ ℂ)
33 oveq1 5929 . . . . . . . 8 (𝑟 = ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) → (𝑟 · 𝑠) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · 𝑠))
34 oveq2 5930 . . . . . . . 8 (𝑠 = ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · 𝑠) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))
35 eqid 2196 . . . . . . . 8 (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))
3633, 34, 35ovmpog 6057 . . . . . . 7 ((((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) ∈ ℂ ∧ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣) ∈ ℂ ∧ (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) ∈ ℂ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))
3727, 31, 32, 36syl3anc 1249 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))
3837eqeq2d 2208 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) ∧ 𝑣 ∈ ℤ) → (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) ↔ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣))))
3938ralbidva 2493 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑢 ∈ ℤ) → (∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) ↔ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣))))
4039ralbidva 2493 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)) ↔ ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢) · ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣))))
4123, 40mpbird 167 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))
42 zringgrp 14151 . . . 4 ring ∈ Grp
43 cnring 14126 . . . . 5 fld ∈ Ring
44 cnfldui 14145 . . . . . 6 {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
45 expghmap.u . . . . . . 7 𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0})
46 expghm.m . . . . . . . 8 𝑀 = (mulGrp‘ℂfld)
4746oveq1i 5932 . . . . . . 7 (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) = ((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0})
4845, 47eqtri 2217 . . . . . 6 𝑈 = ((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0})
4944, 48unitgrp 13672 . . . . 5 (ℂfld ∈ Ring → 𝑈 ∈ Grp)
5043, 49ax-mp 5 . . . 4 𝑈 ∈ Grp
5142, 50pm3.2i 272 . . 3 (ℤring ∈ Grp ∧ 𝑈 ∈ Grp)
52 zringbas 14152 . . . 4 ℤ = (Base‘ℤring)
5345a1i 9 . . . . . 6 (⊤ → 𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0}))
54 cnfldbas 14116 . . . . . . . 8 ℂ = (Base‘ℂfld)
5546, 54mgpbasg 13482 . . . . . . 7 (ℂfld ∈ Ring → ℂ = (Base‘𝑀))
5643, 55mp1i 10 . . . . . 6 (⊤ → ℂ = (Base‘𝑀))
5746mgpex 13481 . . . . . . 7 (ℂfld ∈ Ring → 𝑀 ∈ V)
5843, 57mp1i 10 . . . . . 6 (⊤ → 𝑀 ∈ V)
59 apsscn 8674 . . . . . . 7 {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ
6059a1i 9 . . . . . 6 (⊤ → {𝑧 ∈ ℂ ∣ 𝑧 # 0} ⊆ ℂ)
6153, 56, 58, 60ressbas2d 12746 . . . . 5 (⊤ → {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Base‘𝑈))
6261mptru 1373 . . . 4 {𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Base‘𝑈)
63 zringplusg 14153 . . . 4 + = (+g‘ℤring)
64 mpocnfldmul 14119 . . . . . . . 8 (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (.r‘ℂfld)
6546, 64mgpplusgg 13480 . . . . . . 7 (ℂfld ∈ Ring → (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (+g𝑀))
6643, 65mp1i 10 . . . . . 6 (⊤ → (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (+g𝑀))
67 cnex 8003 . . . . . . . 8 ℂ ∈ V
6867rabex 4177 . . . . . . 7 {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈ V
6968a1i 9 . . . . . 6 (⊤ → {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈ V)
7053, 66, 69, 58ressplusgd 12806 . . . . 5 (⊤ → (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (+g𝑈))
7170mptru 1373 . . . 4 (𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠)) = (+g𝑈)
7252, 62, 63, 71isghm 13373 . . 3 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((ℤring ∈ Grp ∧ 𝑈 ∈ Grp) ∧ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶{𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣)))))
7351, 72mpbiran 942 . 2 ((𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈) ↔ ((𝑥 ∈ ℤ ↦ (𝐴𝑥)):ℤ⟶{𝑧 ∈ ℂ ∣ 𝑧 # 0} ∧ ∀𝑢 ∈ ℤ ∀𝑣 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘(𝑢 + 𝑣)) = (((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑢)(𝑟 ∈ ℂ, 𝑠 ∈ ℂ ↦ (𝑟 · 𝑠))((𝑥 ∈ ℤ ↦ (𝐴𝑥))‘𝑣))))
743, 41, 73sylanbrc 417 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wtru 1365  wcel 2167  wral 2475  {crab 2479  Vcvv 2763  wss 3157   class class class wbr 4033  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  cc 7877  0cc0 7879   + caddc 7882   · cmul 7884   # cap 8608  cz 9326  cexp 10630  Basecbs 12678  s cress 12679  +gcplusg 12755  Grpcgrp 13132   GrpHom cghm 13370  mulGrpcmgp 13476  Ringcrg 13552  fldccnfld 14112  ringczring 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-rp 9729  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-abs 11164  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-cring 13555  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-subrg 13775  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-zring 14147
This theorem is referenced by:  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator