| Step | Hyp | Ref
| Expression |
| 1 | | plyco.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | elply2 14971 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))))) |
| 3 | 1, 2 | sylib 122 |
. . 3
⊢ (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))))) |
| 4 | 3 | simprd 114 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) |
| 5 | | plyco.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| 6 | | plyf 14973 |
. . . . . . . . 9
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
| 7 | 5, 6 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
| 8 | 7 | ffvelcdmda 5697 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
| 9 | 8 | ad4ant14 514 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
| 10 | 7 | feqmptd 5614 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
| 11 | 10 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
| 12 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) |
| 13 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑥 = (𝐺‘𝑧) → (𝑥↑𝑘) = ((𝐺‘𝑧)↑𝑘)) |
| 14 | 13 | oveq2d 5938 |
. . . . . . 7
⊢ (𝑥 = (𝐺‘𝑧) → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
| 15 | 14 | sumeq2sdv 11535 |
. . . . . 6
⊢ (𝑥 = (𝐺‘𝑧) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
| 16 | 9, 11, 12, 15 | fmptco 5728 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝐹 ∘ 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
| 17 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑥↑𝑘) = (𝑤↑𝑘)) |
| 18 | 17 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑤↑𝑘))) |
| 19 | 18 | sumeq2sdv 11535 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘))) |
| 20 | 19 | cbvmptv 4129 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘))) |
| 21 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑎‘𝑘) = (𝑎‘𝑗)) |
| 22 | | oveq2 5930 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑤↑𝑘) = (𝑤↑𝑗)) |
| 23 | 21, 22 | oveq12d 5940 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑎‘𝑘) · (𝑤↑𝑘)) = ((𝑎‘𝑗) · (𝑤↑𝑗))) |
| 24 | 23 | cbvsumv 11526 |
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)) |
| 25 | 24 | mpteq2i 4120 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) |
| 26 | 20, 25 | eqtri 2217 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) |
| 27 | 26 | eqeq2i 2207 |
. . . . . . . 8
⊢ (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) ↔ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
| 28 | 27 | anbi2i 457 |
. . . . . . 7
⊢ (((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) ↔ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) |
| 29 | 28 | anbi2i 457 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) ↔ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))))) |
| 30 | 1 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝐹 ∈ (Poly‘𝑆)) |
| 31 | 5 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝐺 ∈ (Poly‘𝑆)) |
| 32 | | plyco.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 33 | 32 | ad4ant14 514 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 34 | | plyco.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 35 | 34 | ad4ant14 514 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 36 | | simplrl 535 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝑛 ∈ ℕ0) |
| 37 | | simplrr 536 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 38 | 3 | simpld 112 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 39 | 38 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑆 ⊆ ℂ) |
| 40 | | cnex 8003 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
| 41 | | ssexg 4172 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
| 42 | 39, 40, 41 | sylancl 413 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑆 ∈ V) |
| 43 | | c0ex 8020 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 44 | 43 | snex 4218 |
. . . . . . . . . . 11
⊢ {0}
∈ V |
| 45 | | unexg 4478 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
| 46 | 42, 44, 45 | sylancl 413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝑆 ∪ {0}) ∈ V) |
| 47 | | nn0ex 9255 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
| 48 | | elmapg 6720 |
. . . . . . . . . 10
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 49 | 46, 47, 48 | sylancl 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 50 | 37, 49 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 51 | 29, 50 | sylbir 135 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 52 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) |
| 53 | 29, 12 | sylbir 135 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) |
| 54 | 30, 31, 33, 35, 36, 51, 52, 53 | plycolemc 14994 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
| 55 | 29, 54 | sylbi 121 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
| 56 | 16, 55 | eqeltrd 2273 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |
| 57 | 56 | ex 115 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆))) |
| 58 | 57 | rexlimdvva 2622 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆))) |
| 59 | 4, 58 | mpd 13 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |