ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyco GIF version

Theorem plyco 15275
Description: The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyco (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem plyco
Dummy variables 𝑎 𝑘 𝑛 𝑧 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyco.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 15251 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))))
31, 2sylib 122 . . 3 (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))))
43simprd 114 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
5 plyco.2 . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘𝑆))
6 plyf 15253 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
75, 6syl 14 . . . . . . . 8 (𝜑𝐺:ℂ⟶ℂ)
87ffvelcdmda 5722 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
98ad4ant14 514 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
107feqmptd 5639 . . . . . . 7 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
1110ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
12 simprr 531 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
13 oveq1 5958 . . . . . . . 8 (𝑥 = (𝐺𝑧) → (𝑥𝑘) = ((𝐺𝑧)↑𝑘))
1413oveq2d 5967 . . . . . . 7 (𝑥 = (𝐺𝑧) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((𝐺𝑧)↑𝑘)))
1514sumeq2sdv 11725 . . . . . 6 (𝑥 = (𝐺𝑧) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘)))
169, 11, 12, 15fmptco 5753 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝐹𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))))
17 oveq1 5958 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑥𝑘) = (𝑤𝑘))
1817oveq2d 5967 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
1918sumeq2sdv 11725 . . . . . . . . . . 11 (𝑥 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
2019cbvmptv 4144 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
21 fveq2 5583 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
22 oveq2 5959 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2321, 22oveq12d 5969 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2423cbvsumv 11716 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))
2524mpteq2i 4135 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
2620, 25eqtri 2227 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
2726eqeq2i 2217 . . . . . . . 8 (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) ↔ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
2827anbi2i 457 . . . . . . 7 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
2928anbi2i 457 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) ↔ ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))))
301ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐹 ∈ (Poly‘𝑆))
315ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐺 ∈ (Poly‘𝑆))
32 plyco.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3332ad4ant14 514 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
34 plyco.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3534ad4ant14 514 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
36 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝑛 ∈ ℕ0)
37 simplrr 536 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
383simpld 112 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
3938ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑆 ⊆ ℂ)
40 cnex 8056 . . . . . . . . . . . 12 ℂ ∈ V
41 ssexg 4187 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
4239, 40, 41sylancl 413 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑆 ∈ V)
43 c0ex 8073 . . . . . . . . . . . 12 0 ∈ V
4443snex 4233 . . . . . . . . . . 11 {0} ∈ V
45 unexg 4494 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
4642, 44, 45sylancl 413 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑆 ∪ {0}) ∈ V)
47 nn0ex 9308 . . . . . . . . . 10 0 ∈ V
48 elmapg 6755 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
4946, 47, 48sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
5037, 49mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
5129, 50sylbir 135 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
52 simprl 529 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
5329, 12sylbir 135 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5430, 31, 33, 35, 36, 51, 52, 53plycolemc 15274 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5529, 54sylbi 121 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5616, 55eqeltrd 2283 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝐹𝐺) ∈ (Poly‘𝑆))
5756ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐺) ∈ (Poly‘𝑆)))
5857rexlimdvva 2632 . 2 (𝜑 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐺) ∈ (Poly‘𝑆)))
594, 58mpd 13 1 (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773  cun 3165  wss 3167  {csn 3634  cmpt 4109  cima 4682  ccom 4683  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  0cn0 9302  cuz 9655  ...cfz 10137  cexp 10690  Σcsu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-disj 4024  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator