Step | Hyp | Ref
| Expression |
1 | | plyco.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
2 | | elply2 14906 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))))) |
3 | 1, 2 | sylib 122 |
. . 3
⊢ (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))))) |
4 | 3 | simprd 114 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) |
5 | | plyco.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
6 | | plyf 14908 |
. . . . . . . . 9
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
7 | 5, 6 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
8 | 7 | ffvelcdmda 5694 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
9 | 8 | ad4ant14 514 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
10 | 7 | feqmptd 5611 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
11 | 10 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
12 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) |
13 | | oveq1 5926 |
. . . . . . . 8
⊢ (𝑥 = (𝐺‘𝑧) → (𝑥↑𝑘) = ((𝐺‘𝑧)↑𝑘)) |
14 | 13 | oveq2d 5935 |
. . . . . . 7
⊢ (𝑥 = (𝐺‘𝑧) → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
15 | 14 | sumeq2sdv 11516 |
. . . . . 6
⊢ (𝑥 = (𝐺‘𝑧) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
16 | 9, 11, 12, 15 | fmptco 5725 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝐹 ∘ 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
17 | | oveq1 5926 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑥↑𝑘) = (𝑤↑𝑘)) |
18 | 17 | oveq2d 5935 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑎‘𝑘) · (𝑥↑𝑘)) = ((𝑎‘𝑘) · (𝑤↑𝑘))) |
19 | 18 | sumeq2sdv 11516 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘))) |
20 | 19 | cbvmptv 4126 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘))) |
21 | | fveq2 5555 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑎‘𝑘) = (𝑎‘𝑗)) |
22 | | oveq2 5927 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑤↑𝑘) = (𝑤↑𝑗)) |
23 | 21, 22 | oveq12d 5937 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑎‘𝑘) · (𝑤↑𝑘)) = ((𝑎‘𝑗) · (𝑤↑𝑗))) |
24 | 23 | cbvsumv 11507 |
. . . . . . . . . . 11
⊢
Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)) |
25 | 24 | mpteq2i 4117 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑤↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) |
26 | 20, 25 | eqtri 2214 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))) |
27 | 26 | eqeq2i 2204 |
. . . . . . . 8
⊢ (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))) ↔ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))) |
28 | 27 | anbi2i 457 |
. . . . . . 7
⊢ (((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) ↔ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) |
29 | 28 | anbi2i 457 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) ↔ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗)))))) |
30 | 1 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝐹 ∈ (Poly‘𝑆)) |
31 | 5 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝐺 ∈ (Poly‘𝑆)) |
32 | | plyco.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
33 | 32 | ad4ant14 514 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
34 | | plyco.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
35 | 34 | ad4ant14 514 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
36 | | simplrl 535 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝑛 ∈ ℕ0) |
37 | | simplrr 536 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
38 | 3 | simpld 112 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
39 | 38 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑆 ⊆ ℂ) |
40 | | cnex 7998 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
41 | | ssexg 4169 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
42 | 39, 40, 41 | sylancl 413 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑆 ∈ V) |
43 | | c0ex 8015 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
44 | 43 | snex 4215 |
. . . . . . . . . . 11
⊢ {0}
∈ V |
45 | | unexg 4475 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
46 | 42, 44, 45 | sylancl 413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝑆 ∪ {0}) ∈ V) |
47 | | nn0ex 9249 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
48 | | elmapg 6717 |
. . . . . . . . . 10
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
49 | 46, 47, 48 | sylancl 413 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
50 | 37, 49 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
51 | 29, 50 | sylbir 135 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
52 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0}) |
53 | 29, 12 | sylbir 135 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) |
54 | 30, 31, 33, 35, 36, 51, 52, 53 | plycolemc 14928 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎‘𝑗) · (𝑤↑𝑗))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
55 | 29, 54 | sylbi 121 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
56 | 16, 55 | eqeltrd 2270 |
. . . 4
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘))))) → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |
57 | 56 | ex 115 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆))) |
58 | 57 | rexlimdvva 2619 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑥↑𝑘)))) → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆))) |
59 | 4, 58 | mpd 13 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (Poly‘𝑆)) |