ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyco GIF version

Theorem plyco 15398
Description: The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyco (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem plyco
Dummy variables 𝑎 𝑘 𝑛 𝑧 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyco.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 15374 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))))
31, 2sylib 122 . . 3 (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))))
43simprd 114 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
5 plyco.2 . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘𝑆))
6 plyf 15376 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
75, 6syl 14 . . . . . . . 8 (𝜑𝐺:ℂ⟶ℂ)
87ffvelcdmda 5743 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
98ad4ant14 514 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
107feqmptd 5660 . . . . . . 7 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
1110ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
12 simprr 531 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
13 oveq1 5981 . . . . . . . 8 (𝑥 = (𝐺𝑧) → (𝑥𝑘) = ((𝐺𝑧)↑𝑘))
1413oveq2d 5990 . . . . . . 7 (𝑥 = (𝐺𝑧) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((𝐺𝑧)↑𝑘)))
1514sumeq2sdv 11847 . . . . . 6 (𝑥 = (𝐺𝑧) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘)))
169, 11, 12, 15fmptco 5774 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝐹𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))))
17 oveq1 5981 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑥𝑘) = (𝑤𝑘))
1817oveq2d 5990 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
1918sumeq2sdv 11847 . . . . . . . . . . 11 (𝑥 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
2019cbvmptv 4159 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
21 fveq2 5603 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
22 oveq2 5982 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2321, 22oveq12d 5992 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2423cbvsumv 11838 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))
2524mpteq2i 4150 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
2620, 25eqtri 2230 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
2726eqeq2i 2220 . . . . . . . 8 (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) ↔ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
2827anbi2i 457 . . . . . . 7 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
2928anbi2i 457 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) ↔ ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))))
301ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐹 ∈ (Poly‘𝑆))
315ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐺 ∈ (Poly‘𝑆))
32 plyco.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3332ad4ant14 514 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
34 plyco.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3534ad4ant14 514 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
36 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝑛 ∈ ℕ0)
37 simplrr 536 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
383simpld 112 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
3938ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑆 ⊆ ℂ)
40 cnex 8091 . . . . . . . . . . . 12 ℂ ∈ V
41 ssexg 4202 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
4239, 40, 41sylancl 413 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑆 ∈ V)
43 c0ex 8108 . . . . . . . . . . . 12 0 ∈ V
4443snex 4248 . . . . . . . . . . 11 {0} ∈ V
45 unexg 4511 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
4642, 44, 45sylancl 413 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑆 ∪ {0}) ∈ V)
47 nn0ex 9343 . . . . . . . . . 10 0 ∈ V
48 elmapg 6778 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
4946, 47, 48sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
5037, 49mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
5129, 50sylbir 135 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
52 simprl 529 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
5329, 12sylbir 135 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5430, 31, 33, 35, 36, 51, 52, 53plycolemc 15397 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5529, 54sylbi 121 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5616, 55eqeltrd 2286 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝐹𝐺) ∈ (Poly‘𝑆))
5756ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐺) ∈ (Poly‘𝑆)))
5857rexlimdvva 2636 . 2 (𝜑 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐺) ∈ (Poly‘𝑆)))
594, 58mpd 13 1 (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wrex 2489  Vcvv 2779  cun 3175  wss 3177  {csn 3646  cmpt 4124  cima 4699  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  0cn0 9337  cuz 9690  ...cfz 10172  cexp 10727  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator