ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyco GIF version

Theorem plyco 15079
Description: The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyco (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem plyco
Dummy variables 𝑎 𝑘 𝑛 𝑧 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyco.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 elply2 15055 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))))
31, 2sylib 122 . . 3 (𝜑 → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))))
43simprd 114 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))))
5 plyco.2 . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘𝑆))
6 plyf 15057 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
75, 6syl 14 . . . . . . . 8 (𝜑𝐺:ℂ⟶ℂ)
87ffvelcdmda 5700 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
98ad4ant14 514 . . . . . 6 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
107feqmptd 5617 . . . . . . 7 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
1110ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
12 simprr 531 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
13 oveq1 5932 . . . . . . . 8 (𝑥 = (𝐺𝑧) → (𝑥𝑘) = ((𝐺𝑧)↑𝑘))
1413oveq2d 5941 . . . . . . 7 (𝑥 = (𝐺𝑧) → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · ((𝐺𝑧)↑𝑘)))
1514sumeq2sdv 11552 . . . . . 6 (𝑥 = (𝐺𝑧) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘)))
169, 11, 12, 15fmptco 5731 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝐹𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))))
17 oveq1 5932 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑥𝑘) = (𝑤𝑘))
1817oveq2d 5941 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝑎𝑘) · (𝑥𝑘)) = ((𝑎𝑘) · (𝑤𝑘)))
1918sumeq2sdv 11552 . . . . . . . . . . 11 (𝑥 = 𝑤 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
2019cbvmptv 4130 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)))
21 fveq2 5561 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑎𝑘) = (𝑎𝑗))
22 oveq2 5933 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
2321, 22oveq12d 5943 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑎𝑘) · (𝑤𝑘)) = ((𝑎𝑗) · (𝑤𝑗)))
2423cbvsumv 11543 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘)) = Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))
2524mpteq2i 4121 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑤𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
2620, 25eqtri 2217 . . . . . . . . 9 (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))
2726eqeq2i 2207 . . . . . . . 8 (𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))) ↔ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))
2827anbi2i 457 . . . . . . 7 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗)))))
2928anbi2i 457 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) ↔ ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))))
301ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐹 ∈ (Poly‘𝑆))
315ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐺 ∈ (Poly‘𝑆))
32 plyco.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3332ad4ant14 514 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
34 plyco.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
3534ad4ant14 514 . . . . . . 7 ((((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
36 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝑛 ∈ ℕ0)
37 simplrr 536 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
383simpld 112 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
3938ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑆 ⊆ ℂ)
40 cnex 8020 . . . . . . . . . . . 12 ℂ ∈ V
41 ssexg 4173 . . . . . . . . . . . 12 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
4239, 40, 41sylancl 413 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑆 ∈ V)
43 c0ex 8037 . . . . . . . . . . . 12 0 ∈ V
4443snex 4219 . . . . . . . . . . 11 {0} ∈ V
45 unexg 4479 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
4642, 44, 45sylancl 413 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑆 ∪ {0}) ∈ V)
47 nn0ex 9272 . . . . . . . . . 10 0 ∈ V
48 elmapg 6729 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
4946, 47, 48sylancl 413 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
5037, 49mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
5129, 50sylbir 135 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
52 simprl 529 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → (𝑎 “ (ℤ‘(𝑛 + 1))) = {0})
5329, 12sylbir 135 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))
5430, 31, 33, 35, 36, 51, 52, 53plycolemc 15078 . . . . . 6 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑤 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑛)((𝑎𝑗) · (𝑤𝑗))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5529, 54sylbi 121 . . . . 5 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5616, 55eqeltrd 2273 . . . 4 (((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘))))) → (𝐹𝐺) ∈ (Poly‘𝑆))
5756ex 115 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐺) ∈ (Poly‘𝑆)))
5857rexlimdvva 2622 . 2 (𝜑 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑥𝑘)))) → (𝐹𝐺) ∈ (Poly‘𝑆)))
594, 58mpd 13 1 (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  Vcvv 2763  cun 3155  wss 3157  {csn 3623  cmpt 4095  cima 4667  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  𝑚 cmap 6716  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  0cn0 9266  cuz 9618  ...cfz 10100  cexp 10647  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator