ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyaddlem1 GIF version

Theorem plyaddlem1 14893
Description: Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyaddlem.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyaddlem.m (𝜑𝑀 ∈ ℕ0)
plyaddlem.n (𝜑𝑁 ∈ ℕ0)
plyaddlem.a (𝜑𝐴:ℕ0⟶ℂ)
plyaddlem.b (𝜑𝐵:ℕ0⟶ℂ)
plyaddlem.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyaddlem.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyaddlem.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyaddlem.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyaddlem1 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝑧,𝑘,𝜑
Allowed substitution hints:   𝐴(𝑧,𝑘)   𝐵(𝑧)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)   𝑀(𝑧)   𝑁(𝑧)

Proof of Theorem plyaddlem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cnex 7996 . . . 4 ℂ ∈ V
21a1i 9 . . 3 (𝜑 → ℂ ∈ V)
3 0zd 9329 . . . . . 6 (𝜑 → 0 ∈ ℤ)
4 plyaddlem.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
54nn0zd 9437 . . . . . 6 (𝜑𝑀 ∈ ℤ)
63, 5fzfigd 10502 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
76adantr 276 . . . 4 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin)
8 plyaddlem.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
98ad2antrr 488 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℂ)
10 elfznn0 10180 . . . . . . 7 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
1110adantl 277 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
129, 11ffvelcdmd 5694 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝐴𝑘) ∈ ℂ)
13 simplr 528 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑧 ∈ ℂ)
1413, 11expcld 10744 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑧𝑘) ∈ ℂ)
1512, 14mulcld 8040 . . . 4 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
167, 15fsumcl 11543 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
17 plyaddlem.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
1817nn0zd 9437 . . . . . 6 (𝜑𝑁 ∈ ℤ)
193, 18fzfigd 10502 . . . . 5 (𝜑 → (0...𝑁) ∈ Fin)
2019adantr 276 . . . 4 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
21 plyaddlem.b . . . . . . 7 (𝜑𝐵:ℕ0⟶ℂ)
2221ad2antrr 488 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵:ℕ0⟶ℂ)
23 elfznn0 10180 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2423adantl 277 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2522, 24ffvelcdmd 5694 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵𝑘) ∈ ℂ)
26 simplr 528 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑧 ∈ ℂ)
2726, 24expcld 10744 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) ∈ ℂ)
2825, 27mulcld 8040 . . . 4 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
2920, 28fsumcl 11543 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
30 plyaddlem.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
31 plyaddlem.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
322, 16, 29, 30, 31offval2 6146 . 2 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))))
33 0zd 9329 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → 0 ∈ ℤ)
34 2zsupmax 11369 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → sup({𝑀, 𝑁}, ℝ, < ) = if(𝑀𝑁, 𝑁, 𝑀))
355, 18, 34syl2anc 411 . . . . . . . 8 (𝜑 → sup({𝑀, 𝑁}, ℝ, < ) = if(𝑀𝑁, 𝑁, 𝑀))
36 zmaxcl 11368 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → sup({𝑀, 𝑁}, ℝ, < ) ∈ ℤ)
375, 18, 36syl2anc 411 . . . . . . . 8 (𝜑 → sup({𝑀, 𝑁}, ℝ, < ) ∈ ℤ)
3835, 37eqeltrrd 2271 . . . . . . 7 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
3938adantr 276 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
4033, 39fzfigd 10502 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...if(𝑀𝑁, 𝑁, 𝑀)) ∈ Fin)
41 elfznn0 10180 . . . . . 6 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
428adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
4342ffvelcdmda 5693 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
44 expcl 10628 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
4544adantll 476 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
4643, 45mulcld 8040 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
4741, 46sylan2 286 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
4821adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
4948ffvelcdmda 5693 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
5049, 45mulcld 8040 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
5141, 50sylan2 286 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
5240, 47, 51fsumadd 11549 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))) = (Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐵𝑘) · (𝑧𝑘))))
538ffnd 5404 . . . . . . . . . 10 (𝜑𝐴 Fn ℕ0)
5421ffnd 5404 . . . . . . . . . 10 (𝜑𝐵 Fn ℕ0)
55 nn0ex 9246 . . . . . . . . . . 11 0 ∈ V
5655a1i 9 . . . . . . . . . 10 (𝜑 → ℕ0 ∈ V)
57 inidm 3368 . . . . . . . . . 10 (ℕ0 ∩ ℕ0) = ℕ0
58 eqidd 2194 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
59 eqidd 2194 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
608ffvelcdmda 5693 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
6121ffvelcdmda 5693 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
6260, 61addcld 8039 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) + (𝐵𝑘)) ∈ ℂ)
6353, 54, 56, 56, 57, 58, 59, 62ofvalg 6140 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑓 + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
6463adantlr 477 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑓 + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
6564oveq1d 5933 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) + (𝐵𝑘)) · (𝑧𝑘)))
6643, 49, 45adddird 8045 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) + (𝐵𝑘)) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
6765, 66eqtrd 2226 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
6841, 67sylan2 286 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → (((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘)) = (((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
6968sumeq2dv 11511 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑘) · (𝑧𝑘)) + ((𝐵𝑘) · (𝑧𝑘))))
70 zdcle 9393 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
715, 18, 70syl2anc 411 . . . . . . . . . 10 (𝜑DECID 𝑀𝑁)
7218, 5, 71ifcldcd 3593 . . . . . . . . 9 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
734nn0red 9294 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
7417nn0red 9294 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
75 maxle1 11355 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ sup({𝑀, 𝑁}, ℝ, < ))
7673, 74, 75syl2anc 411 . . . . . . . . . 10 (𝜑𝑀 ≤ sup({𝑀, 𝑁}, ℝ, < ))
7776, 35breqtrd 4055 . . . . . . . . 9 (𝜑𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
78 eluz2 9598 . . . . . . . . 9 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
795, 72, 77, 78syl3anbrc 1183 . . . . . . . 8 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀))
80 fzss2 10130 . . . . . . . 8 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑀) → (0...𝑀) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
8179, 80syl 14 . . . . . . 7 (𝜑 → (0...𝑀) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
8281adantr 276 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
8310, 46sylan2 286 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
84 eldifn 3282 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀))
8584adantl 277 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀))
86 eldifi 3281 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)))
8786, 41syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0)
8887adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0)
89 nn0uz 9627 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
90 peano2nn0 9280 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
914, 90syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀 + 1) ∈ ℕ0)
9291, 89eleqtrdi 2286 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 + 1) ∈ (ℤ‘0))
93 uzsplit 10158 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
9492, 93syl 14 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘0) = ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
9589, 94eqtrid 2238 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ0 = ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))))
964nn0cnd 9295 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
97 ax-1cn 7965 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
98 pncan 8225 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
9996, 97, 98sylancl 413 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
10099oveq2d 5934 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀))
101100uneq1d 3312 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
10295, 101eqtrd 2226 . . . . . . . . . . . . . . . 16 (𝜑 → ℕ0 = ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
103102ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
10488, 103eleqtrd 2272 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))))
105 elun 3300 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...𝑀) ∪ (ℤ‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ‘(𝑀 + 1))))
106104, 105sylib 122 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ‘(𝑀 + 1))))
107106ord 725 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘(𝑀 + 1))))
10885, 107mpd 13 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
1098ffund 5407 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐴)
110 ssun2 3323 . . . . . . . . . . . . . . 15 (ℤ‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪ (ℤ‘(𝑀 + 1)))
111110, 95sseqtrrid 3230 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ ℕ0)
1128fdmd 5410 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐴 = ℕ0)
113111, 112sseqtrrd 3218 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ dom 𝐴)
114 funfvima2 5791 . . . . . . . . . . . . 13 ((Fun 𝐴 ∧ (ℤ‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1)))))
115109, 113, 114syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1)))))
116115ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1)))))
117108, 116mpd 13 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑀 + 1))))
118 plyaddlem.a2 . . . . . . . . . . 11 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
119118ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
120117, 119eleqtrd 2272 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴𝑘) ∈ {0})
121 elsni 3636 . . . . . . . . 9 ((𝐴𝑘) ∈ {0} → (𝐴𝑘) = 0)
122120, 121syl 14 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴𝑘) = 0)
123122oveq1d 5933 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
12487, 45sylan2 286 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑧𝑘) ∈ ℂ)
125124mul02d 8411 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (0 · (𝑧𝑘)) = 0)
126123, 125eqtrd 2226 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
127 elfzelz 10091 . . . . . . . . 9 (𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑗 ∈ ℤ)
128127adantl 277 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → 𝑗 ∈ ℤ)
129 0zd 9329 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → 0 ∈ ℤ)
1305ad2antrr 488 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → 𝑀 ∈ ℤ)
131 fzdcel 10106 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑗 ∈ (0...𝑀))
132128, 129, 130, 131syl3anc 1249 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → DECID 𝑗 ∈ (0...𝑀))
133132ralrimiva 2567 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))DECID 𝑗 ∈ (0...𝑀))
13482, 83, 126, 133, 40fisumss 11535 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐴𝑘) · (𝑧𝑘)))
135 maxle2 11356 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ sup({𝑀, 𝑁}, ℝ, < ))
13673, 74, 135syl2anc 411 . . . . . . . . . 10 (𝜑𝑁 ≤ sup({𝑀, 𝑁}, ℝ, < ))
137136, 35breqtrd 4055 . . . . . . . . 9 (𝜑𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
138 eluz2 9598 . . . . . . . . 9 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
13918, 72, 137, 138syl3anbrc 1183 . . . . . . . 8 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁))
140 fzss2 10130 . . . . . . . 8 (if(𝑀𝑁, 𝑁, 𝑀) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
141139, 140syl 14 . . . . . . 7 (𝜑 → (0...𝑁) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
142141adantr 276 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...if(𝑀𝑁, 𝑁, 𝑀)))
14323, 50sylan2 286 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵𝑘) · (𝑧𝑘)) ∈ ℂ)
144 eldifn 3282 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
145144adantl 277 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
146 eldifi 3281 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)))
147146, 41syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
148147adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0)
149 peano2nn0 9280 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
15017, 149syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑁 + 1) ∈ ℕ0)
151150, 89eleqtrdi 2286 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 + 1) ∈ (ℤ‘0))
152 uzsplit 10158 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) ∈ (ℤ‘0) → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
153151, 152syl 14 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℤ‘0) = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
15489, 153eqtrid 2238 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ0 = ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))))
15517nn0cnd 9295 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℂ)
156 pncan 8225 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
157155, 97, 156sylancl 413 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
158157oveq2d 5934 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
159158uneq1d 3312 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
160154, 159eqtrd 2226 . . . . . . . . . . . . . . . 16 (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
161160ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
162148, 161eleqtrd 2272 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
163 elun 3300 . . . . . . . . . . . . . 14 (𝑘 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
164162, 163sylib 122 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
165164ord 725 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → 𝑘 ∈ (ℤ‘(𝑁 + 1))))
166145, 165mpd 13 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
16721ffund 5407 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐵)
168 ssun2 3323 . . . . . . . . . . . . . . 15 (ℤ‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪ (ℤ‘(𝑁 + 1)))
169168, 154sseqtrrid 3230 . . . . . . . . . . . . . 14 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ ℕ0)
17021fdmd 5410 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐵 = ℕ0)
171169, 170sseqtrrd 3218 . . . . . . . . . . . . 13 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ dom 𝐵)
172 funfvima2 5791 . . . . . . . . . . . . 13 ((Fun 𝐵 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1)))))
173167, 171, 172syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1)))))
174173ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1)))))
175166, 174mpd 13 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵𝑘) ∈ (𝐵 “ (ℤ‘(𝑁 + 1))))
176 plyaddlem.b2 . . . . . . . . . . 11 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
177176ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
178175, 177eleqtrd 2272 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵𝑘) ∈ {0})
179 elsni 3636 . . . . . . . . 9 ((𝐵𝑘) ∈ {0} → (𝐵𝑘) = 0)
180178, 179syl 14 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵𝑘) = 0)
181180oveq1d 5933 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
182147, 45sylan2 286 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
183182mul02d 8411 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
184181, 183eqtrd 2226 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵𝑘) · (𝑧𝑘)) = 0)
18518ad2antrr 488 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → 𝑁 ∈ ℤ)
186 fzdcel 10106 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∈ (0...𝑁))
187128, 129, 185, 186syl3anc 1249 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → DECID 𝑗 ∈ (0...𝑁))
188187ralrimiva 2567 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))DECID 𝑗 ∈ (0...𝑁))
189142, 143, 184, 188, 40fisumss 11535 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐵𝑘) · (𝑧𝑘)))
190134, 189oveq12d 5936 . . . 4 ((𝜑𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))) = (Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))((𝐵𝑘) · (𝑧𝑘))))
19152, 69, 1903eqtr4d 2236 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘)) = (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
192191mpteq2dva 4119 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘)))))
19332, 192eqtr4d 2229 1 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150  cun 3151  wss 3153  ifcif 3557  {csn 3618  {cpr 3619   class class class wbr 4029  cmpt 4090  dom cdm 4659  cima 4662  Fun wfun 5248  wf 5250  cfv 5254  (class class class)co 5918  𝑓 cof 6128  Fincfn 6794  supcsup 7041  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  cexp 10609  Σcsu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  plyaddlem  14895
  Copyright terms: Public domain W3C validator