| Step | Hyp | Ref
| Expression |
| 1 | | cnex 8020 |
. . . 4
⊢ ℂ
∈ V |
| 2 | 1 | a1i 9 |
. . 3
⊢ (𝜑 → ℂ ∈
V) |
| 3 | | 0zd 9355 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) |
| 4 | | plyaddlem.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 5 | 4 | nn0zd 9463 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | 3, 5 | fzfigd 10540 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
| 7 | 6 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
| 8 | | plyaddlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 9 | 8 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℂ) |
| 10 | | elfznn0 10206 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
| 11 | 10 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 12 | 9, 11 | ffvelcdmd 5701 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝐴‘𝑘) ∈ ℂ) |
| 13 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑧 ∈ ℂ) |
| 14 | 13, 11 | expcld 10782 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑧↑𝑘) ∈ ℂ) |
| 15 | 12, 14 | mulcld 8064 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 16 | 7, 15 | fsumcl 11582 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 17 | | plyaddlem.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 18 | 17 | nn0zd 9463 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 19 | 3, 18 | fzfigd 10540 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 20 | 19 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
| 21 | | plyaddlem.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 22 | 21 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵:ℕ0⟶ℂ) |
| 23 | | elfznn0 10206 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 24 | 23 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 25 | 22, 24 | ffvelcdmd 5701 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵‘𝑘) ∈ ℂ) |
| 26 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑧 ∈ ℂ) |
| 27 | 26, 24 | expcld 10782 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) ∈ ℂ) |
| 28 | 25, 27 | mulcld 8064 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 29 | 20, 28 | fsumcl 11582 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 30 | | plyaddlem.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 31 | | plyaddlem.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 32 | 2, 16, 29, 30, 31 | offval2 6155 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
| 33 | | 0zd 9355 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
| 34 | | 2zsupmax 11408 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
sup({𝑀, 𝑁}, ℝ, < ) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 35 | 5, 18, 34 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → sup({𝑀, 𝑁}, ℝ, < ) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 36 | | zmaxcl 11406 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
sup({𝑀, 𝑁}, ℝ, < ) ∈
ℤ) |
| 37 | 5, 18, 36 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → sup({𝑀, 𝑁}, ℝ, < ) ∈
ℤ) |
| 38 | 35, 37 | eqeltrrd 2274 |
. . . . . . 7
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 39 | 38 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 40 | 33, 39 | fzfigd 10540 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ Fin) |
| 41 | | elfznn0 10206 |
. . . . . 6
⊢ (𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0) |
| 42 | 8 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
| 43 | 42 | ffvelcdmda 5700 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 44 | | expcl 10666 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 45 | 44 | adantll 476 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
| 46 | 43, 45 | mulcld 8064 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 47 | 41, 46 | sylan2 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 48 | 21 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) |
| 49 | 48 | ffvelcdmda 5700 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) ∈ ℂ) |
| 50 | 49, 45 | mulcld 8064 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 51 | 41, 50 | sylan2 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 52 | 40, 47, 51 | fsumadd 11588 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘))) = (Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 53 | 8 | ffnd 5411 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 Fn ℕ0) |
| 54 | 21 | ffnd 5411 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 Fn ℕ0) |
| 55 | | nn0ex 9272 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 56 | 55 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → ℕ0 ∈
V) |
| 57 | | inidm 3373 |
. . . . . . . . . 10
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
| 58 | | eqidd 2197 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) = (𝐴‘𝑘)) |
| 59 | | eqidd 2197 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) = (𝐵‘𝑘)) |
| 60 | 8 | ffvelcdmda 5700 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 61 | 21 | ffvelcdmda 5700 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) ∈ ℂ) |
| 62 | 60, 61 | addcld 8063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) + (𝐵‘𝑘)) ∈ ℂ) |
| 63 | 53, 54, 56, 56, 57, 58, 59, 62 | ofvalg 6149 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 +
𝐵)‘𝑘) = ((𝐴‘𝑘) + (𝐵‘𝑘))) |
| 64 | 63 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 +
𝐵)‘𝑘) = ((𝐴‘𝑘) + (𝐵‘𝑘))) |
| 65 | 64 | oveq1d 5940 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓 +
𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) + (𝐵‘𝑘)) · (𝑧↑𝑘))) |
| 66 | 43, 49, 45 | adddird 8069 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴‘𝑘) + (𝐵‘𝑘)) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 67 | 65, 66 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓 +
𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 68 | 41, 67 | sylan2 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → (((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 69 | 68 | sumeq2dv 11550 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 70 | | zdcle 9419 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑀 ≤
𝑁) |
| 71 | 5, 18, 70 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → DECID 𝑀 ≤ 𝑁) |
| 72 | 18, 5, 71 | ifcldcd 3598 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 73 | 4 | nn0red 9320 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 74 | 17 | nn0red 9320 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 75 | | maxle1 11393 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
| 76 | 73, 74, 75 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
| 77 | 76, 35 | breqtrd 4060 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 78 | | eluz2 9624 |
. . . . . . . . 9
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 79 | 5, 72, 77, 78 | syl3anbrc 1183 |
. . . . . . . 8
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
| 80 | | fzss2 10156 |
. . . . . . . 8
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 81 | 79, 80 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (0...𝑀) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 82 | 81 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 83 | 10, 46 | sylan2 286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 84 | | eldifn 3287 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) |
| 85 | 84 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) |
| 86 | | eldifi 3286 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 87 | 86, 41 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 88 | 87 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0) |
| 89 | | nn0uz 9653 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 = (ℤ≥‘0) |
| 90 | | peano2nn0 9306 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ0) |
| 91 | 4, 90 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
| 92 | 91, 89 | eleqtrdi 2289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘0)) |
| 93 | | uzsplit 10184 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
| 94 | 92, 93 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 95 | 89, 94 | eqtrid 2241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ0 =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
| 96 | 4 | nn0cnd 9321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 97 | | ax-1cn 7989 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
| 98 | | pncan 8249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
| 99 | 96, 97, 98 | sylancl 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 100 | 99 | oveq2d 5941 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀)) |
| 101 | 100 | uneq1d 3317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
| 102 | 95, 101 | eqtrd 2229 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ0 =
((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 103 | 102 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 104 | 88, 103 | eleqtrd 2275 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
| 105 | | elun 3305 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 106 | 104, 105 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 107 | 106 | ord 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 108 | 85, 107 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) |
| 109 | 8 | ffund 5414 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐴) |
| 110 | | ssun2 3328 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) |
| 111 | 110, 95 | sseqtrrid 3235 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
ℕ0) |
| 112 | 8 | fdmd 5417 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐴 = ℕ0) |
| 113 | 111, 112 | sseqtrrd 3223 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) |
| 114 | | funfvima2 5798 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
| 115 | 109, 113,
114 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
| 116 | 115 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
| 117 | 108, 116 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1)))) |
| 118 | | plyaddlem.a2 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 119 | 118 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 120 | 117, 119 | eleqtrd 2275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ {0}) |
| 121 | | elsni 3641 |
. . . . . . . . 9
⊢ ((𝐴‘𝑘) ∈ {0} → (𝐴‘𝑘) = 0) |
| 122 | 120, 121 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) |
| 123 | 122 | oveq1d 5940 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 124 | 87, 45 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) |
| 125 | 124 | mul02d 8435 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) |
| 126 | 123, 125 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
| 127 | | elfzelz 10117 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑗 ∈ ℤ) |
| 128 | 127 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 𝑗 ∈ ℤ) |
| 129 | | 0zd 9355 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 0 ∈
ℤ) |
| 130 | 5 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 𝑀 ∈ ℤ) |
| 131 | | fzdcel 10132 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑀)) |
| 132 | 128, 129,
130, 131 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → DECID 𝑗 ∈ (0...𝑀)) |
| 133 | 132 | ralrimiva 2570 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))DECID 𝑗 ∈ (0...𝑀)) |
| 134 | 82, 83, 126, 133, 40 | fisumss 11574 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 135 | | maxle2 11394 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
| 136 | 73, 74, 135 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
| 137 | 136, 35 | breqtrd 4060 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
| 138 | | eluz2 9624 |
. . . . . . . . 9
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 139 | 18, 72, 137, 138 | syl3anbrc 1183 |
. . . . . . . 8
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
| 140 | | fzss2 10156 |
. . . . . . . 8
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 141 | 139, 140 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 142 | 141 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 143 | 23, 50 | sylan2 286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 144 | | eldifn 3287 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
| 145 | 144 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
| 146 | | eldifi 3286 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 147 | 146, 41 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 148 | 147 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0) |
| 149 | | peano2nn0 9306 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 150 | 17, 149 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 151 | 150, 89 | eleqtrdi 2289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘0)) |
| 152 | | uzsplit 10184 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
| 153 | 151, 152 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1)))) |
| 154 | 89, 153 | eqtrid 2241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ0 =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
| 155 | 17 | nn0cnd 9321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 156 | | pncan 8249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 157 | 155, 97, 156 | sylancl 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 158 | 157 | oveq2d 5941 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
| 159 | 158 | uneq1d 3317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
| 160 | 154, 159 | eqtrd 2229 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ0 =
((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
| 161 | 160 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
| 162 | 148, 161 | eleqtrd 2275 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
| 163 | | elun 3305 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
| 164 | 162, 163 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
| 165 | 164 | ord 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
| 166 | 145, 165 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) |
| 167 | 21 | ffund 5414 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐵) |
| 168 | | ssun2 3328 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) |
| 169 | 168, 154 | sseqtrrid 3235 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆
ℕ0) |
| 170 | 21 | fdmd 5417 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐵 = ℕ0) |
| 171 | 169, 170 | sseqtrrd 3223 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) |
| 172 | | funfvima2 5798 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐵 ∧
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
| 173 | 167, 171,
172 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
| 174 | 173 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
| 175 | 166, 174 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1)))) |
| 176 | | plyaddlem.b2 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 177 | 176 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 178 | 175, 177 | eleqtrd 2275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵‘𝑘) ∈ {0}) |
| 179 | | elsni 3641 |
. . . . . . . . 9
⊢ ((𝐵‘𝑘) ∈ {0} → (𝐵‘𝑘) = 0) |
| 180 | 178, 179 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵‘𝑘) = 0) |
| 181 | 180 | oveq1d 5940 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 182 | 147, 45 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
| 183 | 182 | mul02d 8435 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
| 184 | 181, 183 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = 0) |
| 185 | 18 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 𝑁 ∈ ℤ) |
| 186 | | fzdcel 10132 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑁)) |
| 187 | 128, 129,
185, 186 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → DECID 𝑗 ∈ (0...𝑁)) |
| 188 | 187 | ralrimiva 2570 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))DECID 𝑗 ∈ (0...𝑁)) |
| 189 | 142, 143,
184, 188, 40 | fisumss 11574 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 190 | 134, 189 | oveq12d 5943 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) = (Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 191 | 52, 69, 190 | 3eqtr4d 2239 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 192 | 191 | mpteq2dva 4124 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
| 193 | 32, 192 | eqtr4d 2232 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |