Step | Hyp | Ref
| Expression |
1 | | cnex 7996 |
. . . 4
⊢ ℂ
∈ V |
2 | 1 | a1i 9 |
. . 3
⊢ (𝜑 → ℂ ∈
V) |
3 | | 0zd 9329 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) |
4 | | plyaddlem.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
5 | 4 | nn0zd 9437 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | 3, 5 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
7 | 6 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
8 | | plyaddlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
9 | 8 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℂ) |
10 | | elfznn0 10180 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
11 | 10 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
12 | 9, 11 | ffvelcdmd 5694 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝐴‘𝑘) ∈ ℂ) |
13 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑧 ∈ ℂ) |
14 | 13, 11 | expcld 10744 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑧↑𝑘) ∈ ℂ) |
15 | 12, 14 | mulcld 8040 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
16 | 7, 15 | fsumcl 11543 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
17 | | plyaddlem.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
18 | 17 | nn0zd 9437 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 3, 18 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
20 | 19 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
21 | | plyaddlem.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
22 | 21 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐵:ℕ0⟶ℂ) |
23 | | elfznn0 10180 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
24 | 23 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
25 | 22, 24 | ffvelcdmd 5694 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐵‘𝑘) ∈ ℂ) |
26 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑧 ∈ ℂ) |
27 | 26, 24 | expcld 10744 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) ∈ ℂ) |
28 | 25, 27 | mulcld 8040 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
29 | 20, 28 | fsumcl 11543 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
30 | | plyaddlem.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
31 | | plyaddlem.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
32 | 2, 16, 29, 30, 31 | offval2 6146 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
33 | | 0zd 9329 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
34 | | 2zsupmax 11369 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
sup({𝑀, 𝑁}, ℝ, < ) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
35 | 5, 18, 34 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → sup({𝑀, 𝑁}, ℝ, < ) = if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
36 | | zmaxcl 11368 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
sup({𝑀, 𝑁}, ℝ, < ) ∈
ℤ) |
37 | 5, 18, 36 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → sup({𝑀, 𝑁}, ℝ, < ) ∈
ℤ) |
38 | 35, 37 | eqeltrrd 2271 |
. . . . . . 7
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
39 | 38 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
40 | 33, 39 | fzfigd 10502 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∈ Fin) |
41 | | elfznn0 10180 |
. . . . . 6
⊢ (𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0) |
42 | 8 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
43 | 42 | ffvelcdmda 5693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
44 | | expcl 10628 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
45 | 44 | adantll 476 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
46 | 43, 45 | mulcld 8040 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
47 | 41, 46 | sylan2 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
48 | 21 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) |
49 | 48 | ffvelcdmda 5693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) ∈ ℂ) |
50 | 49, 45 | mulcld 8040 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
51 | 41, 50 | sylan2 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
52 | 40, 47, 51 | fsumadd 11549 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘))) = (Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
53 | 8 | ffnd 5404 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 Fn ℕ0) |
54 | 21 | ffnd 5404 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 Fn ℕ0) |
55 | | nn0ex 9246 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
56 | 55 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → ℕ0 ∈
V) |
57 | | inidm 3368 |
. . . . . . . . . 10
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
58 | | eqidd 2194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) = (𝐴‘𝑘)) |
59 | | eqidd 2194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) = (𝐵‘𝑘)) |
60 | 8 | ffvelcdmda 5693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
61 | 21 | ffvelcdmda 5693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) ∈ ℂ) |
62 | 60, 61 | addcld 8039 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) + (𝐵‘𝑘)) ∈ ℂ) |
63 | 53, 54, 56, 56, 57, 58, 59, 62 | ofvalg 6140 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 +
𝐵)‘𝑘) = ((𝐴‘𝑘) + (𝐵‘𝑘))) |
64 | 63 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 +
𝐵)‘𝑘) = ((𝐴‘𝑘) + (𝐵‘𝑘))) |
65 | 64 | oveq1d 5933 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓 +
𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) + (𝐵‘𝑘)) · (𝑧↑𝑘))) |
66 | 43, 49, 45 | adddird 8045 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴‘𝑘) + (𝐵‘𝑘)) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
67 | 65, 66 | eqtrd 2226 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘𝑓 +
𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
68 | 41, 67 | sylan2 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → (((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
69 | 68 | sumeq2dv 11511 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴‘𝑘) · (𝑧↑𝑘)) + ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
70 | | zdcle 9393 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑀 ≤
𝑁) |
71 | 5, 18, 70 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → DECID 𝑀 ≤ 𝑁) |
72 | 18, 5, 71 | ifcldcd 3593 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
73 | 4 | nn0red 9294 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
74 | 17 | nn0red 9294 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
75 | | maxle1 11355 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
76 | 73, 74, 75 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
77 | 76, 35 | breqtrd 4055 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
78 | | eluz2 9598 |
. . . . . . . . 9
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
79 | 5, 72, 77, 78 | syl3anbrc 1183 |
. . . . . . . 8
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀)) |
80 | | fzss2 10130 |
. . . . . . . 8
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
81 | 79, 80 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (0...𝑀) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
82 | 81 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
83 | 10, 46 | sylan2 286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
84 | | eldifn 3282 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) |
85 | 84 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) |
86 | | eldifi 3281 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
87 | 86, 41 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) |
88 | 87 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0) |
89 | | nn0uz 9627 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 = (ℤ≥‘0) |
90 | | peano2nn0 9280 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ0) |
91 | 4, 90 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
92 | 91, 89 | eleqtrdi 2286 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘0)) |
93 | | uzsplit 10158 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
94 | 92, 93 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1)))) |
95 | 89, 94 | eqtrid 2238 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ0 =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
96 | 4 | nn0cnd 9295 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℂ) |
97 | | ax-1cn 7965 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℂ |
98 | | pncan 8225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
99 | 96, 97, 98 | sylancl 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
100 | 99 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀)) |
101 | 100 | uneq1d 3312 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
102 | 95, 101 | eqtrd 2226 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ0 =
((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
103 | 102 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
104 | 88, 103 | eleqtrd 2272 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
105 | | elun 3300 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
106 | 104, 105 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
107 | 106 | ord 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
108 | 85, 107 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) |
109 | 8 | ffund 5407 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐴) |
110 | | ssun2 3323 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) |
111 | 110, 95 | sseqtrrid 3230 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
ℕ0) |
112 | 8 | fdmd 5410 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐴 = ℕ0) |
113 | 111, 112 | sseqtrrd 3218 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) |
114 | | funfvima2 5791 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
115 | 109, 113,
114 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
116 | 115 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
117 | 108, 116 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1)))) |
118 | | plyaddlem.a2 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
119 | 118 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
120 | 117, 119 | eleqtrd 2272 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ {0}) |
121 | | elsni 3636 |
. . . . . . . . 9
⊢ ((𝐴‘𝑘) ∈ {0} → (𝐴‘𝑘) = 0) |
122 | 120, 121 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) |
123 | 122 | oveq1d 5933 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
124 | 87, 45 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) |
125 | 124 | mul02d 8411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) |
126 | 123, 125 | eqtrd 2226 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
127 | | elfzelz 10091 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑗 ∈ ℤ) |
128 | 127 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 𝑗 ∈ ℤ) |
129 | | 0zd 9329 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 0 ∈
ℤ) |
130 | 5 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 𝑀 ∈ ℤ) |
131 | | fzdcel 10106 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑀)) |
132 | 128, 129,
130, 131 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → DECID 𝑗 ∈ (0...𝑀)) |
133 | 132 | ralrimiva 2567 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))DECID 𝑗 ∈ (0...𝑀)) |
134 | 82, 83, 126, 133, 40 | fisumss 11535 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐴‘𝑘) · (𝑧↑𝑘))) |
135 | | maxle2 11356 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
136 | 73, 74, 135 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ≤ sup({𝑀, 𝑁}, ℝ, < )) |
137 | 136, 35 | breqtrd 4055 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) |
138 | | eluz2 9598 |
. . . . . . . . 9
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
139 | 18, 72, 137, 138 | syl3anbrc 1183 |
. . . . . . . 8
⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁)) |
140 | | fzss2 10130 |
. . . . . . . 8
⊢ (if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
141 | 139, 140 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
142 | 141 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
143 | 23, 50 | sylan2 286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
144 | | eldifn 3282 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
145 | 144 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
146 | | eldifi 3281 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
147 | 146, 41 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
148 | 147 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ℕ0) |
149 | | peano2nn0 9280 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
150 | 17, 149 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
151 | 150, 89 | eleqtrdi 2286 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘0)) |
152 | | uzsplit 10158 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
153 | 151, 152 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1)))) |
154 | 89, 153 | eqtrid 2238 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ0 =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
155 | 17 | nn0cnd 9295 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℂ) |
156 | | pncan 8225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
157 | 155, 97, 156 | sylancl 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
158 | 157 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
159 | 158 | uneq1d 3312 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
160 | 154, 159 | eqtrd 2226 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ0 =
((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
161 | 160 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
162 | 148, 161 | eleqtrd 2272 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
163 | | elun 3300 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
164 | 162, 163 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ∨ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
165 | 164 | ord 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) |
166 | 145, 165 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) |
167 | 21 | ffund 5407 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐵) |
168 | | ssun2 3323 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) |
169 | 168, 154 | sseqtrrid 3230 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆
ℕ0) |
170 | 21 | fdmd 5410 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐵 = ℕ0) |
171 | 169, 170 | sseqtrrd 3218 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) |
172 | | funfvima2 5791 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐵 ∧
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
173 | 167, 171,
172 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
174 | 173 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
175 | 166, 174 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵‘𝑘) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1)))) |
176 | | plyaddlem.b2 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
177 | 176 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
178 | 175, 177 | eleqtrd 2272 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵‘𝑘) ∈ {0}) |
179 | | elsni 3636 |
. . . . . . . . 9
⊢ ((𝐵‘𝑘) ∈ {0} → (𝐵‘𝑘) = 0) |
180 | 178, 179 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝐵‘𝑘) = 0) |
181 | 180 | oveq1d 5933 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
182 | 147, 45 | sylan2 286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
183 | 182 | mul02d 8411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
184 | 181, 183 | eqtrd 2226 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = 0) |
185 | 18 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → 𝑁 ∈ ℤ) |
186 | | fzdcel 10106 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑗 ∈ (0...𝑁)) |
187 | 128, 129,
185, 186 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → DECID 𝑗 ∈ (0...𝑁)) |
188 | 187 | ralrimiva 2567 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ∀𝑗 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))DECID 𝑗 ∈ (0...𝑁)) |
189 | 142, 143,
184, 188, 40 | fisumss 11535 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐵‘𝑘) · (𝑧↑𝑘))) |
190 | 134, 189 | oveq12d 5936 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) = (Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
191 | 52, 69, 190 | 3eqtr4d 2236 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
192 | 191 | mpteq2dva 4119 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) + Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
193 | 32, 192 | eqtr4d 2229 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |