![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fprodunsn | GIF version |
Description: Multiply in an additional term in a finite product. See also fprodsplitsn 11776 which is the same but with a Ⅎ𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.) |
Ref | Expression |
---|---|
fprodunsn.f | ⊢ Ⅎ𝑘𝐷 |
fprodunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodunsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fprodunsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
fprodunsn.ccl | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fprodunsn.dcl | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
fprodunsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
fprodunsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodunsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
2 | disjsn 3680 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
3 | 1, 2 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
4 | eqidd 2194 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
5 | fprodunsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | fprodunsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | unsnfi 6975 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
8 | 5, 6, 1, 7 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
9 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
10 | 9 | orcd 734 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
11 | df-dc 836 | . . . . . 6 ⊢ (DECID 𝑗 ∈ 𝐴 ↔ (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) | |
12 | 10, 11 | sylibr 134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → DECID 𝑗 ∈ 𝐴) |
13 | simpr 110 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 ∈ {𝐵}) | |
14 | velsn 3635 | . . . . . . . . 9 ⊢ (𝑗 ∈ {𝐵} ↔ 𝑗 = 𝐵) | |
15 | 13, 14 | sylib 122 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 = 𝐵) |
16 | 1 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝐵 ∈ 𝐴) |
17 | 15, 16 | eqneltrd 2289 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝑗 ∈ 𝐴) |
18 | 17 | olcd 735 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
19 | 18, 11 | sylibr 134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → DECID 𝑗 ∈ 𝐴) |
20 | elun 3300 | . . . . . . 7 ⊢ (𝑗 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) | |
21 | 20 | biimpi 120 | . . . . . 6 ⊢ (𝑗 ∈ (𝐴 ∪ {𝐵}) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) |
22 | 21 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) |
23 | 12, 19, 22 | mpjaodan 799 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) → DECID 𝑗 ∈ 𝐴) |
24 | 23 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (𝐴 ∪ {𝐵})DECID 𝑗 ∈ 𝐴) |
25 | fprodunsn.ccl | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
26 | 25 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
27 | elsni 3636 | . . . . . . 7 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
28 | 27 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝑘 = 𝐵) |
29 | fprodunsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
30 | 28, 29 | syl 14 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐷) |
31 | fprodunsn.dcl | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
32 | 31 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐷 ∈ ℂ) |
33 | 30, 32 | eqeltrd 2270 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ ℂ) |
34 | elun 3300 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
35 | 34 | biimpi 120 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) |
36 | 35 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) |
37 | 26, 33, 36 | mpjaodan 799 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
38 | 3, 4, 8, 24, 37 | fprodsplitdc 11739 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
39 | fprodunsn.f | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
40 | 39, 29 | prodsnf 11735 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
41 | 6, 31, 40 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
42 | 41 | oveq2d 5934 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
43 | 38, 42 | eqtrd 2226 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 Ⅎwnfc 2323 ∪ cun 3151 ∩ cin 3152 ∅c0 3446 {csn 3618 (class class class)co 5918 Fincfn 6794 ℂcc 7870 · cmul 7877 ∏cprod 11693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-proddc 11694 |
This theorem is referenced by: fprodcl2lem 11748 fprodconst 11763 fprodap0 11764 fprodrec 11772 fprodmodd 11784 |
Copyright terms: Public domain | W3C validator |