ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodunsn GIF version

Theorem fprodunsn 11545
Description: Multiply in an additional term in a finite product. See also fprodsplitsn 11574 which is the same but with a 𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.)
Hypotheses
Ref Expression
fprodunsn.f 𝑘𝐷
fprodunsn.a (𝜑𝐴 ∈ Fin)
fprodunsn.b (𝜑𝐵𝑉)
fprodunsn.ba (𝜑 → ¬ 𝐵𝐴)
fprodunsn.ccl ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodunsn.dcl (𝜑𝐷 ∈ ℂ)
fprodunsn.d (𝑘 = 𝐵𝐶 = 𝐷)
Assertion
Ref Expression
fprodunsn (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fprodunsn
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fprodunsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
2 disjsn 3638 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
31, 2sylibr 133 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
4 eqidd 2166 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
5 fprodunsn.a . . . 4 (𝜑𝐴 ∈ Fin)
6 fprodunsn.b . . . 4 (𝜑𝐵𝑉)
7 unsnfi 6884 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
85, 6, 1, 7syl3anc 1228 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
9 simpr 109 . . . . . . 7 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗𝐴) → 𝑗𝐴)
109orcd 723 . . . . . 6 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
11 df-dc 825 . . . . . 6 (DECID 𝑗𝐴 ↔ (𝑗𝐴 ∨ ¬ 𝑗𝐴))
1210, 11sylibr 133 . . . . 5 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗𝐴) → DECID 𝑗𝐴)
13 simpr 109 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 ∈ {𝐵})
14 velsn 3593 . . . . . . . . 9 (𝑗 ∈ {𝐵} ↔ 𝑗 = 𝐵)
1513, 14sylib 121 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 = 𝐵)
161ad2antrr 480 . . . . . . . 8 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝐵𝐴)
1715, 16eqneltrd 2262 . . . . . . 7 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝑗𝐴)
1817olcd 724 . . . . . 6 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
1918, 11sylibr 133 . . . . 5 (((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → DECID 𝑗𝐴)
20 elun 3263 . . . . . . 7 (𝑗 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑗𝐴𝑗 ∈ {𝐵}))
2120biimpi 119 . . . . . 6 (𝑗 ∈ (𝐴 ∪ {𝐵}) → (𝑗𝐴𝑗 ∈ {𝐵}))
2221adantl 275 . . . . 5 ((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) → (𝑗𝐴𝑗 ∈ {𝐵}))
2312, 19, 22mpjaodan 788 . . . 4 ((𝜑𝑗 ∈ (𝐴 ∪ {𝐵})) → DECID 𝑗𝐴)
2423ralrimiva 2539 . . 3 (𝜑 → ∀𝑗 ∈ (𝐴 ∪ {𝐵})DECID 𝑗𝐴)
25 fprodunsn.ccl . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2625adantlr 469 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
27 elsni 3594 . . . . . . 7 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
2827adantl 275 . . . . . 6 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝑘 = 𝐵)
29 fprodunsn.d . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐷)
3028, 29syl 14 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐷)
31 fprodunsn.dcl . . . . . 6 (𝜑𝐷 ∈ ℂ)
3231ad2antrr 480 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐷 ∈ ℂ)
3330, 32eqeltrd 2243 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ ℂ)
34 elun 3263 . . . . . 6 (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘𝐴𝑘 ∈ {𝐵}))
3534biimpi 119 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘𝐴𝑘 ∈ {𝐵}))
3635adantl 275 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘𝐴𝑘 ∈ {𝐵}))
3726, 33, 36mpjaodan 788 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
383, 4, 8, 24, 37fprodsplitdc 11537 . 2 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶))
39 fprodunsn.f . . . . 5 𝑘𝐷
4039, 29prodsnf 11533 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
416, 31, 40syl2anc 409 . . 3 (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
4241oveq2d 5858 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘𝐴 𝐶 · 𝐷))
4338, 42eqtrd 2198 1 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wnfc 2295  cun 3114  cin 3115  c0 3409  {csn 3576  (class class class)co 5842  Fincfn 6706  cc 7751   · cmul 7758  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodcl2lem  11546  fprodconst  11561  fprodap0  11562  fprodrec  11570  fprodmodd  11582
  Copyright terms: Public domain W3C validator