| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodunsn | GIF version | ||
| Description: Multiply in an additional term in a finite product. See also fprodsplitsn 12139 which is the same but with a Ⅎ𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| fprodunsn.f | ⊢ Ⅎ𝑘𝐷 |
| fprodunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodunsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fprodunsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| fprodunsn.ccl | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fprodunsn.dcl | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| fprodunsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| fprodunsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodunsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
| 2 | disjsn 3728 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
| 4 | eqidd 2230 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
| 5 | fprodunsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 6 | fprodunsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | unsnfi 7077 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
| 8 | 5, 6, 1, 7 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 9 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
| 10 | 9 | orcd 738 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
| 11 | df-dc 840 | . . . . . 6 ⊢ (DECID 𝑗 ∈ 𝐴 ↔ (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) | |
| 12 | 10, 11 | sylibr 134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → DECID 𝑗 ∈ 𝐴) |
| 13 | simpr 110 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 ∈ {𝐵}) | |
| 14 | velsn 3683 | . . . . . . . . 9 ⊢ (𝑗 ∈ {𝐵} ↔ 𝑗 = 𝐵) | |
| 15 | 13, 14 | sylib 122 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 = 𝐵) |
| 16 | 1 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝐵 ∈ 𝐴) |
| 17 | 15, 16 | eqneltrd 2325 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝑗 ∈ 𝐴) |
| 18 | 17 | olcd 739 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
| 19 | 18, 11 | sylibr 134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → DECID 𝑗 ∈ 𝐴) |
| 20 | elun 3345 | . . . . . . 7 ⊢ (𝑗 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) | |
| 21 | 20 | biimpi 120 | . . . . . 6 ⊢ (𝑗 ∈ (𝐴 ∪ {𝐵}) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) |
| 22 | 21 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) |
| 23 | 12, 19, 22 | mpjaodan 803 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) → DECID 𝑗 ∈ 𝐴) |
| 24 | 23 | ralrimiva 2603 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (𝐴 ∪ {𝐵})DECID 𝑗 ∈ 𝐴) |
| 25 | fprodunsn.ccl | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 26 | 25 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 27 | elsni 3684 | . . . . . . 7 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
| 28 | 27 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝑘 = 𝐵) |
| 29 | fprodunsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
| 30 | 28, 29 | syl 14 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐷) |
| 31 | fprodunsn.dcl | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 32 | 31 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐷 ∈ ℂ) |
| 33 | 30, 32 | eqeltrd 2306 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ ℂ) |
| 34 | elun 3345 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
| 35 | 34 | biimpi 120 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) |
| 36 | 35 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) |
| 37 | 26, 33, 36 | mpjaodan 803 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
| 38 | 3, 4, 8, 24, 37 | fprodsplitdc 12102 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
| 39 | fprodunsn.f | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
| 40 | 39, 29 | prodsnf 12098 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 41 | 6, 31, 40 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 42 | 41 | oveq2d 6016 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| 43 | 38, 42 | eqtrd 2262 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 Ⅎwnfc 2359 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 (class class class)co 6000 Fincfn 6885 ℂcc 7993 · cmul 8000 ∏cprod 12056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-proddc 12057 |
| This theorem is referenced by: fprodcl2lem 12111 fprodconst 12126 fprodap0 12127 fprodrec 12135 fprodmodd 12147 |
| Copyright terms: Public domain | W3C validator |