| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodunsn | GIF version | ||
| Description: Multiply in an additional term in a finite product. See also fprodsplitsn 12059 which is the same but with a Ⅎ𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.) |
| Ref | Expression |
|---|---|
| fprodunsn.f | ⊢ Ⅎ𝑘𝐷 |
| fprodunsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodunsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fprodunsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| fprodunsn.ccl | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fprodunsn.dcl | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| fprodunsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| fprodunsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodunsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
| 2 | disjsn 3705 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
| 4 | eqidd 2208 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
| 5 | fprodunsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 6 | fprodunsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | unsnfi 7042 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
| 8 | 5, 6, 1, 7 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 9 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
| 10 | 9 | orcd 735 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
| 11 | df-dc 837 | . . . . . 6 ⊢ (DECID 𝑗 ∈ 𝐴 ↔ (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) | |
| 12 | 10, 11 | sylibr 134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ 𝐴) → DECID 𝑗 ∈ 𝐴) |
| 13 | simpr 110 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 ∈ {𝐵}) | |
| 14 | velsn 3660 | . . . . . . . . 9 ⊢ (𝑗 ∈ {𝐵} ↔ 𝑗 = 𝐵) | |
| 15 | 13, 14 | sylib 122 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → 𝑗 = 𝐵) |
| 16 | 1 | ad2antrr 488 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝐵 ∈ 𝐴) |
| 17 | 15, 16 | eqneltrd 2303 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → ¬ 𝑗 ∈ 𝐴) |
| 18 | 17 | olcd 736 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
| 19 | 18, 11 | sylibr 134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑗 ∈ {𝐵}) → DECID 𝑗 ∈ 𝐴) |
| 20 | elun 3322 | . . . . . . 7 ⊢ (𝑗 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) | |
| 21 | 20 | biimpi 120 | . . . . . 6 ⊢ (𝑗 ∈ (𝐴 ∪ {𝐵}) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) |
| 22 | 21 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ {𝐵})) |
| 23 | 12, 19, 22 | mpjaodan 800 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝐴 ∪ {𝐵})) → DECID 𝑗 ∈ 𝐴) |
| 24 | 23 | ralrimiva 2581 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (𝐴 ∪ {𝐵})DECID 𝑗 ∈ 𝐴) |
| 25 | fprodunsn.ccl | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 26 | 25 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 27 | elsni 3661 | . . . . . . 7 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
| 28 | 27 | adantl 277 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝑘 = 𝐵) |
| 29 | fprodunsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
| 30 | 28, 29 | syl 14 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 = 𝐷) |
| 31 | fprodunsn.dcl | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 32 | 31 | ad2antrr 488 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐷 ∈ ℂ) |
| 33 | 30, 32 | eqeltrd 2284 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ {𝐵}) → 𝐶 ∈ ℂ) |
| 34 | elun 3322 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
| 35 | 34 | biimpi 120 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) |
| 36 | 35 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) |
| 37 | 26, 33, 36 | mpjaodan 800 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
| 38 | 3, 4, 8, 24, 37 | fprodsplitdc 12022 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
| 39 | fprodunsn.f | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
| 40 | 39, 29 | prodsnf 12018 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 41 | 6, 31, 40 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 42 | 41 | oveq2d 5983 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| 43 | 38, 42 | eqtrd 2240 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2178 Ⅎwnfc 2337 ∪ cun 3172 ∩ cin 3173 ∅c0 3468 {csn 3643 (class class class)co 5967 Fincfn 6850 ℂcc 7958 · cmul 7965 ∏cprod 11976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 |
| This theorem is referenced by: fprodcl2lem 12031 fprodconst 12046 fprodap0 12047 fprodrec 12055 fprodmodd 12067 |
| Copyright terms: Public domain | W3C validator |