ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsexp GIF version

Theorem dvdsexp 10744
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
dvdsexp ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))

Proof of Theorem dvdsexp
StepHypRef Expression
1 simp1 941 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℤ)
2 uznn0sub 8982 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
323ad2ant3 964 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
4 zexpcl 9869 . . . 4 ((𝐴 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝐴↑(𝑁𝑀)) ∈ ℤ)
51, 3, 4syl2anc 403 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) ∈ ℤ)
6 zexpcl 9869 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℤ)
763adant3 961 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℤ)
8 dvdsmul2 10701 . . 3 (((𝐴↑(𝑁𝑀)) ∈ ℤ ∧ (𝐴𝑀) ∈ ℤ) → (𝐴𝑀) ∥ ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
95, 7, 8syl2anc 403 . 2 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
101zcnd 8802 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
11 simp2 942 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1210, 11, 3expaddd 9985 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑((𝑁𝑀) + 𝑀)) = ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
13 eluzelcn 8962 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
14133ad2ant3 964 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
1511nn0cnd 8661 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
1614, 15npcand 7741 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁𝑀) + 𝑀) = 𝑁)
1716oveq2d 5629 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑((𝑁𝑀) + 𝑀)) = (𝐴𝑁))
1812, 17eqtr3d 2119 . 2 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)) = (𝐴𝑁))
199, 18breqtrd 3844 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 922  wcel 1436   class class class wbr 3820  cfv 4981  (class class class)co 5613  cc 7292   + caddc 7297   · cmul 7299  cmin 7597  0cn0 8606  cz 8683  cuz 8951  cexp 9853  cdvds 10678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-n0 8607  df-z 8684  df-uz 8952  df-iseq 9780  df-iexp 9854  df-dvds 10679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator