ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsexp GIF version

Theorem dvdsexp 11548
Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
dvdsexp ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))

Proof of Theorem dvdsexp
StepHypRef Expression
1 simp1 981 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℤ)
2 uznn0sub 9350 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
323ad2ant3 1004 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
4 zexpcl 10301 . . . 4 ((𝐴 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝐴↑(𝑁𝑀)) ∈ ℤ)
51, 3, 4syl2anc 408 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) ∈ ℤ)
6 zexpcl 10301 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℤ)
763adant3 1001 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℤ)
8 dvdsmul2 11505 . . 3 (((𝐴↑(𝑁𝑀)) ∈ ℤ ∧ (𝐴𝑀) ∈ ℤ) → (𝐴𝑀) ∥ ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
95, 7, 8syl2anc 408 . 2 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
101zcnd 9167 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
11 simp2 982 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1210, 11, 3expaddd 10419 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑((𝑁𝑀) + 𝑀)) = ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)))
13 eluzelcn 9330 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
14133ad2ant3 1004 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
1511nn0cnd 9025 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
1614, 15npcand 8070 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁𝑀) + 𝑀) = 𝑁)
1716oveq2d 5783 . . 3 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴↑((𝑁𝑀) + 𝑀)) = (𝐴𝑁))
1812, 17eqtr3d 2172 . 2 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝐴↑(𝑁𝑀)) · (𝐴𝑀)) = (𝐴𝑁))
199, 18breqtrd 3949 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 962  wcel 1480   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611   + caddc 7616   · cmul 7618  cmin 7926  0cn0 8970  cz 9047  cuz 9319  cexp 10285  cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-exp 10286  df-dvds 11483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator