ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3m1 GIF version

Theorem seq3m1 10470
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
seq3m1.m (𝜑𝑀 ∈ ℤ)
seq3m1.n (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
seq3m1.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3m1.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3m1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3m1
StepHypRef Expression
1 seq3m1.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 seq3m1.n . . . 4 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
3 eluzp1m1 9553 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
41, 2, 3syl2anc 411 . . 3 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
5 seq3m1.f . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 seq3m1.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
74, 5, 6seq3p1 10464 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘((𝑁 − 1) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘((𝑁 − 1) + 1))))
8 eluzelcn 9541 . . . . 5 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ℂ)
9 ax-1cn 7906 . . . . 5 1 ∈ ℂ
10 npcan 8168 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
118, 9, 10sylancl 413 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → ((𝑁 − 1) + 1) = 𝑁)
122, 11syl 14 . . 3 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1312fveq2d 5521 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘((𝑁 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑁))
1412fveq2d 5521 . . 3 (𝜑 → (𝐹‘((𝑁 − 1) + 1)) = (𝐹𝑁))
1514oveq2d 5893 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘((𝑁 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
167, 13, 153eqtr3d 2218 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5218  (class class class)co 5877  cc 7811  1c1 7814   + caddc 7816  cmin 8130  cz 9255  cuz 9530  seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448
This theorem is referenced by:  seq3f1olemqsumkj  10500  seq3id  10510  seq3z  10513  bcn2  10746  seq3coll  10824  serf0  11362  lgsval2lem  14450
  Copyright terms: Public domain W3C validator