ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3m1 GIF version

Theorem seq3m1 10565
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
Hypotheses
Ref Expression
seq3m1.m (𝜑𝑀 ∈ ℤ)
seq3m1.n (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
seq3m1.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3m1.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3m1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3m1
StepHypRef Expression
1 seq3m1.m . . . 4 (𝜑𝑀 ∈ ℤ)
2 seq3m1.n . . . 4 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
3 eluzp1m1 9625 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
41, 2, 3syl2anc 411 . . 3 (𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))
5 seq3m1.f . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 seq3m1.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
74, 5, 6seq3p1 10557 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘((𝑁 − 1) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘((𝑁 − 1) + 1))))
8 eluzelcn 9612 . . . . 5 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ℂ)
9 ax-1cn 7972 . . . . 5 1 ∈ ℂ
10 npcan 8235 . . . . 5 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
118, 9, 10sylancl 413 . . . 4 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → ((𝑁 − 1) + 1) = 𝑁)
122, 11syl 14 . . 3 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1312fveq2d 5562 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘((𝑁 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑁))
1412fveq2d 5562 . . 3 (𝜑 → (𝐹‘((𝑁 − 1) + 1)) = (𝐹𝑁))
1514oveq2d 5938 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹‘((𝑁 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
167, 13, 153eqtr3d 2237 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (𝐹𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  cc 7877  1c1 7880   + caddc 7882  cmin 8197  cz 9326  cuz 9601  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540
This theorem is referenced by:  seqm1g  10566  seq3f1olemqsumkj  10603  seq3id  10617  seq3z  10620  bcn2  10856  seq3coll  10934  serf0  11517  lgsval2lem  15251
  Copyright terms: Public domain W3C validator