Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version |
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 9954 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ‘cfv 5188 (class class class)co 5842 ℤ≥cuz 9466 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-neg 8072 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: elfzel1 9959 elfzelz 9960 elfzle1 9962 eluzfz2b 9968 fzsplit2 9985 fzsplit 9986 fzopth 9996 fzss1 9998 fzss2 9999 fzssuz 10000 fzp1elp1 10010 uzsplit 10027 elfzmlbm 10066 fzosplit 10112 seq3feq2 10405 seq3feq 10407 ser3mono 10413 seq3caopr3 10416 iseqf1olemkle 10419 iseqf1olemklt 10420 iseqf1olemnab 10423 iseqf1olemqk 10429 iseqf1olemjpcl 10430 iseqf1olemqpcl 10431 iseqf1olemfvp 10432 seq3f1olemqsumkj 10433 seq3f1olemqsumk 10434 seq3f1olemqsum 10435 seq3f1olemstep 10436 seq3f1oleml 10438 seq3f1o 10439 seq3z 10446 ser0 10449 ser3le 10453 seq3coll 10755 climub 11285 sumrbdclem 11318 fsum3cvg 11319 fsum3ser 11338 fsump1i 11374 fsum0diaglem 11381 iserabs 11416 isumsplit 11432 isum1p 11433 geosergap 11447 mertenslemi1 11476 prodf1 11483 prodfap0 11486 prodfrecap 11487 prodfdivap 11488 prodrbdclem 11512 fproddccvg 11513 fprodntrivap 11525 fprodabs 11557 fprodeq0 11558 infssuzex 11882 prmind2 12052 prmdvdsfz 12071 isprm5lem 12073 eulerthlemrprm 12161 eulerthlema 12162 pcfac 12280 lgsdilem2 13577 cvgcmp2nlemabs 13911 |
Copyright terms: Public domain | W3C validator |