Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version |
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 9922 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 ‘cfv 5170 (class class class)co 5824 ℤ≥cuz 9439 ...cfz 9912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-neg 8049 df-z 9168 df-uz 9440 df-fz 9913 |
This theorem is referenced by: elfzel1 9927 elfzelz 9928 elfzle1 9929 eluzfz2b 9935 fzsplit2 9952 fzsplit 9953 fzopth 9963 fzss1 9965 fzss2 9966 fzssuz 9967 fzp1elp1 9977 uzsplit 9994 elfzmlbm 10030 fzosplit 10076 seq3feq2 10369 seq3feq 10371 ser3mono 10377 seq3caopr3 10380 iseqf1olemkle 10383 iseqf1olemklt 10384 iseqf1olemnab 10387 iseqf1olemqk 10393 iseqf1olemjpcl 10394 iseqf1olemqpcl 10395 iseqf1olemfvp 10396 seq3f1olemqsumkj 10397 seq3f1olemqsumk 10398 seq3f1olemqsum 10399 seq3f1olemstep 10400 seq3f1oleml 10402 seq3f1o 10403 seq3z 10410 ser0 10413 ser3le 10417 seq3coll 10713 climub 11241 sumrbdclem 11274 fsum3cvg 11275 fsum3ser 11294 fsump1i 11330 fsum0diaglem 11337 iserabs 11372 isumsplit 11388 isum1p 11389 geosergap 11403 mertenslemi1 11432 prodf1 11439 prodfap0 11442 prodfrecap 11443 prodfdivap 11444 prodrbdclem 11468 fproddccvg 11469 fprodntrivap 11481 fprodabs 11513 fprodeq0 11514 infssuzex 11835 prmind2 11996 prmdvdsfz 12015 eulerthlemrprm 12103 eulerthlema 12104 cvgcmp2nlemabs 13603 |
Copyright terms: Public domain | W3C validator |