| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10215 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 ℤ≥cuz 9722 ...cfz 10204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-neg 8320 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: elfzel1 10220 elfzelz 10221 elfzle1 10223 eluzfz2b 10229 fzsplit2 10246 fzsplit 10247 fzopth 10257 fzss1 10259 fzss2 10260 fzssuz 10261 fzp1elp1 10271 uzsplit 10288 elfzmlbm 10327 fzosplit 10375 infssuzex 10453 seq3feq2 10698 seq3feq 10702 ser3mono 10709 seq3caopr3 10713 iseqf1olemkle 10719 iseqf1olemklt 10720 iseqf1olemnab 10723 iseqf1olemqk 10729 iseqf1olemjpcl 10730 iseqf1olemqpcl 10731 iseqf1olemfvp 10732 seq3f1olemqsumkj 10733 seq3f1olemqsumk 10734 seq3f1olemqsum 10735 seq3f1olemstep 10736 seq3f1oleml 10738 seq3f1o 10739 seqf1oglem2 10742 seq3z 10750 ser0 10755 ser3le 10759 seq3coll 11064 swrdval2 11183 swrdswrd 11237 pfxccatin12 11265 pfxccatpfx2 11269 climub 11855 sumrbdclem 11888 fsum3cvg 11889 fsum3ser 11908 fsump1i 11944 fsum0diaglem 11951 iserabs 11986 isumsplit 12002 isum1p 12003 geosergap 12017 mertenslemi1 12046 prodf1 12053 prodfap0 12056 prodfrecap 12057 prodfdivap 12058 prodrbdclem 12082 fproddccvg 12083 fprodntrivap 12095 fprodabs 12127 fprodeq0 12128 nninfctlemfo 12561 prmind2 12642 prmdvdsfz 12661 isprm5lem 12663 eulerthlemrprm 12751 eulerthlema 12752 pcfac 12873 mersenne 15671 lgsdilem2 15715 cvgcmp2nlemabs 16400 |
| Copyright terms: Public domain | W3C validator |