| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10094 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ℤ≥cuz 9601 ...cfz 10083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-neg 8200 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: elfzel1 10099 elfzelz 10100 elfzle1 10102 eluzfz2b 10108 fzsplit2 10125 fzsplit 10126 fzopth 10136 fzss1 10138 fzss2 10139 fzssuz 10140 fzp1elp1 10150 uzsplit 10167 elfzmlbm 10206 fzosplit 10253 infssuzex 10323 seq3feq2 10568 seq3feq 10572 ser3mono 10579 seq3caopr3 10583 iseqf1olemkle 10589 iseqf1olemklt 10590 iseqf1olemnab 10593 iseqf1olemqk 10599 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 iseqf1olemfvp 10602 seq3f1olemqsumkj 10603 seq3f1olemqsumk 10604 seq3f1olemqsum 10605 seq3f1olemstep 10606 seq3f1oleml 10608 seq3f1o 10609 seqf1oglem2 10612 seq3z 10620 ser0 10625 ser3le 10629 seq3coll 10934 climub 11509 sumrbdclem 11542 fsum3cvg 11543 fsum3ser 11562 fsump1i 11598 fsum0diaglem 11605 iserabs 11640 isumsplit 11656 isum1p 11657 geosergap 11671 mertenslemi1 11700 prodf1 11707 prodfap0 11710 prodfrecap 11711 prodfdivap 11712 prodrbdclem 11736 fproddccvg 11737 fprodntrivap 11749 fprodabs 11781 fprodeq0 11782 nninfctlemfo 12207 prmind2 12288 prmdvdsfz 12307 isprm5lem 12309 eulerthlemrprm 12397 eulerthlema 12398 pcfac 12519 mersenne 15233 lgsdilem2 15277 cvgcmp2nlemabs 15676 |
| Copyright terms: Public domain | W3C validator |