ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz GIF version

Theorem elfzuz 9742
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))

Proof of Theorem elfzuz
StepHypRef Expression
1 elfzuzb 9740 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
21simplbi 270 1 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463  cfv 5091  (class class class)co 5740  cuz 9275  ...cfz 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-cnex 7675  ax-resscn 7676
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-neg 7900  df-z 9006  df-uz 9276  df-fz 9731
This theorem is referenced by:  elfzel1  9745  elfzelz  9746  elfzle1  9747  eluzfz2b  9753  fzsplit2  9770  fzsplit  9771  fzopth  9781  fzss1  9783  fzss2  9784  fzssuz  9785  fzp1elp1  9795  uzsplit  9812  elfzmlbm  9848  fzosplit  9894  seq3feq2  10183  seq3feq  10185  ser3mono  10191  seq3caopr3  10194  iseqf1olemkle  10197  iseqf1olemklt  10198  iseqf1olemnab  10201  iseqf1olemqk  10207  iseqf1olemjpcl  10208  iseqf1olemqpcl  10209  iseqf1olemfvp  10210  seq3f1olemqsumkj  10211  seq3f1olemqsumk  10212  seq3f1olemqsum  10213  seq3f1olemstep  10214  seq3f1oleml  10216  seq3f1o  10217  seq3z  10224  ser0  10227  ser3le  10231  seq3coll  10525  climub  11053  sumrbdclem  11085  fsum3cvg  11086  fsum3ser  11106  fsump1i  11142  fsum0diaglem  11149  iserabs  11184  isumsplit  11200  isum1p  11201  geosergap  11215  mertenslemi1  11244  infssuzex  11538  prmind2  11697  prmdvdsfz  11715  cvgcmp2nlemabs  13029
  Copyright terms: Public domain W3C validator