| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10113 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 ℤ≥cuz 9620 ...cfz 10102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8219 df-z 9346 df-uz 9621 df-fz 10103 |
| This theorem is referenced by: elfzel1 10118 elfzelz 10119 elfzle1 10121 eluzfz2b 10127 fzsplit2 10144 fzsplit 10145 fzopth 10155 fzss1 10157 fzss2 10158 fzssuz 10159 fzp1elp1 10169 uzsplit 10186 elfzmlbm 10225 fzosplit 10272 infssuzex 10342 seq3feq2 10587 seq3feq 10591 ser3mono 10598 seq3caopr3 10602 iseqf1olemkle 10608 iseqf1olemklt 10609 iseqf1olemnab 10612 iseqf1olemqk 10618 iseqf1olemjpcl 10619 iseqf1olemqpcl 10620 iseqf1olemfvp 10621 seq3f1olemqsumkj 10622 seq3f1olemqsumk 10623 seq3f1olemqsum 10624 seq3f1olemstep 10625 seq3f1oleml 10627 seq3f1o 10628 seqf1oglem2 10631 seq3z 10639 ser0 10644 ser3le 10648 seq3coll 10953 climub 11528 sumrbdclem 11561 fsum3cvg 11562 fsum3ser 11581 fsump1i 11617 fsum0diaglem 11624 iserabs 11659 isumsplit 11675 isum1p 11676 geosergap 11690 mertenslemi1 11719 prodf1 11726 prodfap0 11729 prodfrecap 11730 prodfdivap 11731 prodrbdclem 11755 fproddccvg 11756 fprodntrivap 11768 fprodabs 11800 fprodeq0 11801 nninfctlemfo 12234 prmind2 12315 prmdvdsfz 12334 isprm5lem 12336 eulerthlemrprm 12424 eulerthlema 12425 pcfac 12546 mersenne 15341 lgsdilem2 15385 cvgcmp2nlemabs 15789 |
| Copyright terms: Public domain | W3C validator |