| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10141 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ‘cfv 5271 (class class class)co 5944 ℤ≥cuz 9648 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-neg 8246 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: elfzel1 10146 elfzelz 10147 elfzle1 10149 eluzfz2b 10155 fzsplit2 10172 fzsplit 10173 fzopth 10183 fzss1 10185 fzss2 10186 fzssuz 10187 fzp1elp1 10197 uzsplit 10214 elfzmlbm 10253 fzosplit 10301 infssuzex 10376 seq3feq2 10621 seq3feq 10625 ser3mono 10632 seq3caopr3 10636 iseqf1olemkle 10642 iseqf1olemklt 10643 iseqf1olemnab 10646 iseqf1olemqk 10652 iseqf1olemjpcl 10653 iseqf1olemqpcl 10654 iseqf1olemfvp 10655 seq3f1olemqsumkj 10656 seq3f1olemqsumk 10657 seq3f1olemqsum 10658 seq3f1olemstep 10659 seq3f1oleml 10661 seq3f1o 10662 seqf1oglem2 10665 seq3z 10673 ser0 10678 ser3le 10682 seq3coll 10987 swrdval2 11104 climub 11655 sumrbdclem 11688 fsum3cvg 11689 fsum3ser 11708 fsump1i 11744 fsum0diaglem 11751 iserabs 11786 isumsplit 11802 isum1p 11803 geosergap 11817 mertenslemi1 11846 prodf1 11853 prodfap0 11856 prodfrecap 11857 prodfdivap 11858 prodrbdclem 11882 fproddccvg 11883 fprodntrivap 11895 fprodabs 11927 fprodeq0 11928 nninfctlemfo 12361 prmind2 12442 prmdvdsfz 12461 isprm5lem 12463 eulerthlemrprm 12551 eulerthlema 12552 pcfac 12673 mersenne 15469 lgsdilem2 15513 cvgcmp2nlemabs 15971 |
| Copyright terms: Public domain | W3C validator |