Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version |
Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 9975 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ‘cfv 5198 (class class class)co 5853 ℤ≥cuz 9487 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-neg 8093 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: elfzel1 9980 elfzelz 9981 elfzle1 9983 eluzfz2b 9989 fzsplit2 10006 fzsplit 10007 fzopth 10017 fzss1 10019 fzss2 10020 fzssuz 10021 fzp1elp1 10031 uzsplit 10048 elfzmlbm 10087 fzosplit 10133 seq3feq2 10426 seq3feq 10428 ser3mono 10434 seq3caopr3 10437 iseqf1olemkle 10440 iseqf1olemklt 10441 iseqf1olemnab 10444 iseqf1olemqk 10450 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 iseqf1olemfvp 10453 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 seq3f1olemqsum 10456 seq3f1olemstep 10457 seq3f1oleml 10459 seq3f1o 10460 seq3z 10467 ser0 10470 ser3le 10474 seq3coll 10777 climub 11307 sumrbdclem 11340 fsum3cvg 11341 fsum3ser 11360 fsump1i 11396 fsum0diaglem 11403 iserabs 11438 isumsplit 11454 isum1p 11455 geosergap 11469 mertenslemi1 11498 prodf1 11505 prodfap0 11508 prodfrecap 11509 prodfdivap 11510 prodrbdclem 11534 fproddccvg 11535 fprodntrivap 11547 fprodabs 11579 fprodeq0 11580 infssuzex 11904 prmind2 12074 prmdvdsfz 12093 isprm5lem 12095 eulerthlemrprm 12183 eulerthlema 12184 pcfac 12302 lgsdilem2 13731 cvgcmp2nlemabs 14064 |
Copyright terms: Public domain | W3C validator |