| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuz | GIF version | ||
| Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10176 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℤ≥cuz 9683 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-neg 8281 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: elfzel1 10181 elfzelz 10182 elfzle1 10184 eluzfz2b 10190 fzsplit2 10207 fzsplit 10208 fzopth 10218 fzss1 10220 fzss2 10221 fzssuz 10222 fzp1elp1 10232 uzsplit 10249 elfzmlbm 10288 fzosplit 10336 infssuzex 10413 seq3feq2 10658 seq3feq 10662 ser3mono 10669 seq3caopr3 10673 iseqf1olemkle 10679 iseqf1olemklt 10680 iseqf1olemnab 10683 iseqf1olemqk 10689 iseqf1olemjpcl 10690 iseqf1olemqpcl 10691 iseqf1olemfvp 10692 seq3f1olemqsumkj 10693 seq3f1olemqsumk 10694 seq3f1olemqsum 10695 seq3f1olemstep 10696 seq3f1oleml 10698 seq3f1o 10699 seqf1oglem2 10702 seq3z 10710 ser0 10715 ser3le 10719 seq3coll 11024 swrdval2 11142 swrdswrd 11196 pfxccatin12 11224 pfxccatpfx2 11228 climub 11770 sumrbdclem 11803 fsum3cvg 11804 fsum3ser 11823 fsump1i 11859 fsum0diaglem 11866 iserabs 11901 isumsplit 11917 isum1p 11918 geosergap 11932 mertenslemi1 11961 prodf1 11968 prodfap0 11971 prodfrecap 11972 prodfdivap 11973 prodrbdclem 11997 fproddccvg 11998 fprodntrivap 12010 fprodabs 12042 fprodeq0 12043 nninfctlemfo 12476 prmind2 12557 prmdvdsfz 12576 isprm5lem 12578 eulerthlemrprm 12666 eulerthlema 12667 pcfac 12788 mersenne 15584 lgsdilem2 15628 cvgcmp2nlemabs 16173 |
| Copyright terms: Public domain | W3C validator |