| Step | Hyp | Ref
| Expression |
| 1 | | simplr 528 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
| 2 | | pwsgrp.y |
. . . . . 6
⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 4 | | pwsinvg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑌) |
| 5 | | simpll 527 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝑅 ∈ Grp) |
| 6 | | simprl 529 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 ∈ 𝐵) |
| 7 | 2, 3, 4, 5, 1, 6 | pwselbas 12996 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹:𝐼⟶(Base‘𝑅)) |
| 8 | 7 | ffvelcdmda 5700 |
. . . 4
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝑅)) |
| 9 | | eqid 2196 |
. . . . . . . 8
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 10 | 3, 9 | grpinvf 13249 |
. . . . . . 7
⊢ (𝑅 ∈ Grp →
(invg‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
| 11 | 10 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (invg‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
| 12 | 11 | adantr 276 |
. . . . 5
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (invg‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
| 13 | | simprr 531 |
. . . . . . 7
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 ∈ 𝐵) |
| 14 | 2, 3, 4, 5, 1, 13 | pwselbas 12996 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺:𝐼⟶(Base‘𝑅)) |
| 15 | 14 | ffvelcdmda 5700 |
. . . . 5
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘𝑅)) |
| 16 | 12, 15 | ffvelcdmd 5701 |
. . . 4
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘(𝐺‘𝑥)) ∈ (Base‘𝑅)) |
| 17 | 7 | feqmptd 5617 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 18 | | eqid 2196 |
. . . . . . 7
⊢
(invg‘𝑌) = (invg‘𝑌) |
| 19 | 2, 4, 9, 18 | pwsinvg 13314 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) = ((invg‘𝑅) ∘ 𝐺)) |
| 20 | 5, 1, 13, 19 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑌)‘𝐺) = ((invg‘𝑅) ∘ 𝐺)) |
| 21 | 14 | feqmptd 5617 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
| 22 | 11 | feqmptd 5617 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (invg‘𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg‘𝑅)‘𝑦))) |
| 23 | | fveq2 5561 |
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑥) → ((invg‘𝑅)‘𝑦) = ((invg‘𝑅)‘(𝐺‘𝑥))) |
| 24 | 15, 21, 22, 23 | fmptco 5731 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑅) ∘ 𝐺) = (𝑥 ∈ 𝐼 ↦ ((invg‘𝑅)‘(𝐺‘𝑥)))) |
| 25 | 20, 24 | eqtrd 2229 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑌)‘𝐺) = (𝑥 ∈ 𝐼 ↦ ((invg‘𝑅)‘(𝐺‘𝑥)))) |
| 26 | 1, 8, 16, 17, 25 | offval2 6155 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 ∘𝑓
(+g‘𝑅)((invg‘𝑌)‘𝐺)) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥))))) |
| 27 | 2 | pwsgrp 13313 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Grp) |
| 28 | 4, 18 | grpinvcl 13250 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
| 29 | 27, 13, 28 | syl2an2r 595 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
| 30 | | eqid 2196 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 31 | | eqid 2196 |
. . . 4
⊢
(+g‘𝑌) = (+g‘𝑌) |
| 32 | 2, 4, 5, 1, 6, 29,
30, 31 | pwsplusgval 12997 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)) = (𝐹 ∘𝑓
(+g‘𝑅)((invg‘𝑌)‘𝐺))) |
| 33 | | pwssub.m |
. . . . . 6
⊢ 𝑀 = (-g‘𝑅) |
| 34 | 3, 30, 9, 33 | grpsubval 13248 |
. . . . 5
⊢ (((𝐹‘𝑥) ∈ (Base‘𝑅) ∧ (𝐺‘𝑥) ∈ (Base‘𝑅)) → ((𝐹‘𝑥)𝑀(𝐺‘𝑥)) = ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥)))) |
| 35 | 8, 15, 34 | syl2anc 411 |
. . . 4
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)𝑀(𝐺‘𝑥)) = ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥)))) |
| 36 | 35 | mpteq2dva 4124 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝑀(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥))))) |
| 37 | 26, 32, 36 | 3eqtr4d 2239 |
. 2
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝑀(𝐺‘𝑥)))) |
| 38 | | pwssub.n |
. . . 4
⊢ − =
(-g‘𝑌) |
| 39 | 4, 31, 18, 38 | grpsubval 13248 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
| 40 | 39 | adantl 277 |
. 2
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
| 41 | 1, 8, 15, 17, 21 | offval2 6155 |
. 2
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 ∘𝑓 𝑀𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝑀(𝐺‘𝑥)))) |
| 42 | 37, 40, 41 | 3eqtr4d 2239 |
1
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹 ∘𝑓 𝑀𝐺)) |