| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . 4
⊢
((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) |
| 2 | | simp2 1000 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
| 3 | | scaslid 12855 |
. . . . . 6
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
| 4 | 3 | slotex 12730 |
. . . . 5
⊢ (𝑅 ∈ Grp →
(Scalar‘𝑅) ∈
V) |
| 5 | 4 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (Scalar‘𝑅) ∈ V) |
| 6 | | fconst6g 5459 |
. . . . 5
⊢ (𝑅 ∈ Grp → (𝐼 × {𝑅}):𝐼⟶Grp) |
| 7 | 6 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝐼 × {𝑅}):𝐼⟶Grp) |
| 8 | | eqid 2196 |
. . . 4
⊢
(Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 9 | | eqid 2196 |
. . . 4
⊢
(invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) =
(invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 10 | | simp3 1001 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 11 | | pwsinvg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑌) |
| 12 | | pwsgrp.y |
. . . . . . . . 9
⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| 13 | | eqid 2196 |
. . . . . . . . 9
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
| 14 | 12, 13 | pwsval 12993 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 15 | 14 | 3adant3 1019 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 16 | 15 | fveq2d 5565 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 17 | 11, 16 | eqtrid 2241 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 18 | 10, 17 | eleqtrd 2275 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | 1, 2, 5, 7, 8, 9, 18 | prdsinvgd 13312 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) →
((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋‘𝑥)))) |
| 20 | | simp1 999 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 21 | | fvconst2g 5779 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 22 | 20, 21 | sylan 283 |
. . . . . . 7
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 23 | 22 | fveq2d 5565 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = (invg‘𝑅)) |
| 24 | | pwsinvg.m |
. . . . . 6
⊢ 𝑀 = (invg‘𝑅) |
| 25 | 23, 24 | eqtr4di 2247 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = 𝑀) |
| 26 | 25 | fveq1d 5563 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋‘𝑥)) = (𝑀‘(𝑋‘𝑥))) |
| 27 | 26 | mpteq2dva 4124 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑀‘(𝑋‘𝑥)))) |
| 28 | 19, 27 | eqtrd 2229 |
. 2
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) →
((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑀‘(𝑋‘𝑥)))) |
| 29 | | pwsinvg.n |
. . . 4
⊢ 𝑁 = (invg‘𝑌) |
| 30 | 15 | fveq2d 5565 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (invg‘𝑌) =
(invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 31 | 29, 30 | eqtrid 2241 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑁 =
(invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 32 | 31 | fveq1d 5563 |
. 2
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) =
((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋)) |
| 33 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 34 | 12, 33, 11, 20, 2, 10 | pwselbas 12996 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶(Base‘𝑅)) |
| 35 | 34 | ffvelcdmda 5700 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 36 | 34 | feqmptd 5617 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
| 37 | 33, 24 | grpinvf 13249 |
. . . . 5
⊢ (𝑅 ∈ Grp → 𝑀:(Base‘𝑅)⟶(Base‘𝑅)) |
| 38 | 37 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑀:(Base‘𝑅)⟶(Base‘𝑅)) |
| 39 | 38 | feqmptd 5617 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑀 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑀‘𝑦))) |
| 40 | | fveq2 5561 |
. . 3
⊢ (𝑦 = (𝑋‘𝑥) → (𝑀‘𝑦) = (𝑀‘(𝑋‘𝑥))) |
| 41 | 35, 36, 39, 40 | fmptco 5731 |
. 2
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑀 ∘ 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝑀‘(𝑋‘𝑥)))) |
| 42 | 28, 32, 41 | 3eqtr4d 2239 |
1
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑀 ∘ 𝑋)) |