| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashcl | GIF version | ||
| Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashcl | ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6838 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | simprl 529 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ∈ ω) | |
| 4 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
| 5 | 4 | ensymd 6860 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≈ 𝐴) |
| 6 | hashennn 10906 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑛 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) | |
| 7 | 3, 5, 6 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) |
| 8 | 0zd 9366 | . . . . . 6 ⊢ (𝑛 ∈ ω → 0 ∈ ℤ) | |
| 9 | eqid 2204 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 10 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ω → 𝑛 ∈ ω) | |
| 11 | 8, 9, 10 | frec2uzuzd 10528 | . . . . 5 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ≥‘0)) |
| 12 | nn0uz 9665 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 13 | 11, 12 | eleqtrrdi 2298 | . . . 4 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
| 14 | 3, 13 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
| 15 | 7, 14 | eqeltrd 2281 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) ∈ ℕ0) |
| 16 | 2, 15 | rexlimddv 2627 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 class class class wbr 4043 ↦ cmpt 4104 ωcom 4636 ‘cfv 5268 (class class class)co 5934 freccfrec 6466 ≈ cen 6815 Fincfn 6817 0cc0 7907 1c1 7908 + caddc 7910 ℕ0cn0 9277 ℤcz 9354 ℤ≥cuz 9630 ♯chash 10901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-recs 6381 df-frec 6467 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-ihash 10902 |
| This theorem is referenced by: hashfiv01gt1 10908 filtinf 10917 isfinite4im 10918 fihashneq0 10920 hashnncl 10921 fihashssdif 10944 hashdifpr 10946 hashxp 10952 zfz1isolemsplit 10964 zfz1isolemiso 10965 zfz1isolem1 10966 ccatfvalfi 11023 ccatval2 11029 fz1f1o 11605 fsumconst 11684 hashiun 11708 hash2iun1dif1 11710 fprodconst 11850 phival 12454 phicl2 12455 phiprmpw 12463 sumhashdc 12589 4sqlem11 12643 hashfinmndnn 13182 0sgm 15375 lgsquadlem1 15472 lgsquadlem2 15473 lgsquadlem3 15474 |
| Copyright terms: Public domain | W3C validator |