![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashcl | GIF version |
Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
Ref | Expression |
---|---|
hashcl | ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6558 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | simprl 499 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ∈ ω) | |
4 | simprr 500 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
5 | 4 | ensymd 6580 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≈ 𝐴) |
6 | hashennn 10319 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑛 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) | |
7 | 3, 5, 6 | syl2anc 404 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) |
8 | 0zd 8860 | . . . . . 6 ⊢ (𝑛 ∈ ω → 0 ∈ ℤ) | |
9 | eqid 2095 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
10 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ω → 𝑛 ∈ ω) | |
11 | 8, 9, 10 | frec2uzuzd 9958 | . . . . 5 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ≥‘0)) |
12 | nn0uz 9152 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
13 | 11, 12 | syl6eleqr 2188 | . . . 4 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
14 | 3, 13 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
15 | 7, 14 | eqeltrd 2171 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) ∈ ℕ0) |
16 | 2, 15 | rexlimddv 2507 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∃wrex 2371 class class class wbr 3867 ↦ cmpt 3921 ωcom 4433 ‘cfv 5049 (class class class)co 5690 freccfrec 6193 ≈ cen 6535 Fincfn 6537 0cc0 7447 1c1 7448 + caddc 7450 ℕ0cn0 8771 ℤcz 8848 ℤ≥cuz 9118 ♯chash 10314 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-recs 6108 df-frec 6194 df-er 6332 df-en 6538 df-dom 6539 df-fin 6540 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-uz 9119 df-ihash 10315 |
This theorem is referenced by: hashfiv01gt1 10321 filtinf 10331 isfinite4im 10332 fihashneq0 10334 hashnncl 10335 fihashssdif 10357 hashdifpr 10359 hashxp 10365 zfz1isolemsplit 10374 zfz1isolemiso 10375 zfz1isolem1 10376 fz1f1o 10934 fsumconst 11013 hashiun 11037 hash2iun1dif1 11039 phival 11632 phicl2 11633 phiprmpw 11641 |
Copyright terms: Public domain | W3C validator |