ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashcl GIF version

Theorem hashcl 10852
Description: Closure of the function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashcl (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)

Proof of Theorem hashcl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6815 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simprl 529 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
4 simprr 531 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
54ensymd 6837 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛𝐴)
6 hashennn 10851 . . . 4 ((𝑛 ∈ ω ∧ 𝑛𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
73, 5, 6syl2anc 411 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
8 0zd 9329 . . . . . 6 (𝑛 ∈ ω → 0 ∈ ℤ)
9 eqid 2193 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
10 id 19 . . . . . 6 (𝑛 ∈ ω → 𝑛 ∈ ω)
118, 9, 10frec2uzuzd 10473 . . . . 5 (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ‘0))
12 nn0uz 9627 . . . . 5 0 = (ℤ‘0)
1311, 12eleqtrrdi 2287 . . . 4 (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0)
143, 13syl 14 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0)
157, 14eqeltrd 2270 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘𝐴) ∈ ℕ0)
162, 15rexlimddv 2616 1 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  cmpt 4090  ωcom 4622  cfv 5254  (class class class)co 5918  freccfrec 6443  cen 6792  Fincfn 6794  0cc0 7872  1c1 7873   + caddc 7875  0cn0 9240  cz 9317  cuz 9592  chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-ihash 10847
This theorem is referenced by:  hashfiv01gt1  10853  filtinf  10862  isfinite4im  10863  fihashneq0  10865  hashnncl  10866  fihashssdif  10889  hashdifpr  10891  hashxp  10897  zfz1isolemsplit  10909  zfz1isolemiso  10910  zfz1isolem1  10911  fz1f1o  11518  fsumconst  11597  hashiun  11621  hash2iun1dif1  11623  fprodconst  11763  phival  12351  phicl2  12352  phiprmpw  12360  sumhashdc  12485  4sqlem11  12539  hashfinmndnn  13013  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator