ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashcl GIF version

Theorem hashcl 10948
Description: Closure of the function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashcl (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)

Proof of Theorem hashcl
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6865 . . 3 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
3 simprl 529 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛 ∈ ω)
4 simprr 531 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝐴𝑛)
54ensymd 6888 . . . 4 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → 𝑛𝐴)
6 hashennn 10947 . . . 4 ((𝑛 ∈ ω ∧ 𝑛𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
73, 5, 6syl2anc 411 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
8 0zd 9404 . . . . . 6 (𝑛 ∈ ω → 0 ∈ ℤ)
9 eqid 2206 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
10 id 19 . . . . . 6 (𝑛 ∈ ω → 𝑛 ∈ ω)
118, 9, 10frec2uzuzd 10569 . . . . 5 (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ‘0))
12 nn0uz 9703 . . . . 5 0 = (ℤ‘0)
1311, 12eleqtrrdi 2300 . . . 4 (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0)
143, 13syl 14 . . 3 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0)
157, 14eqeltrd 2283 . 2 ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (♯‘𝐴) ∈ ℕ0)
162, 15rexlimddv 2629 1 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4051  cmpt 4113  ωcom 4646  cfv 5280  (class class class)co 5957  freccfrec 6489  cen 6838  Fincfn 6840  0cc0 7945  1c1 7946   + caddc 7948  0cn0 9315  cz 9392  cuz 9668  chash 10942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-ihash 10943
This theorem is referenced by:  hashfiv01gt1  10949  filtinf  10958  isfinite4im  10959  fihashneq0  10961  hashnncl  10962  fihashssdif  10985  hashdifpr  10987  hashxp  10993  zfz1isolemsplit  11005  zfz1isolemiso  11006  zfz1isolem1  11007  ccatfvalfi  11071  ccatval2  11077  fz1f1o  11761  fsumconst  11840  hashiun  11864  hash2iun1dif1  11866  fprodconst  12006  phival  12610  phicl2  12611  phiprmpw  12619  sumhashdc  12745  4sqlem11  12799  hashfinmndnn  13339  0sgm  15532  lgsquadlem1  15629  lgsquadlem2  15630  lgsquadlem3  15631
  Copyright terms: Public domain W3C validator