| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashcl | GIF version | ||
| Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashcl | ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6829 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | simprl 529 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ∈ ω) | |
| 4 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
| 5 | 4 | ensymd 6851 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≈ 𝐴) |
| 6 | hashennn 10891 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑛 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) | |
| 7 | 3, 5, 6 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) |
| 8 | 0zd 9357 | . . . . . 6 ⊢ (𝑛 ∈ ω → 0 ∈ ℤ) | |
| 9 | eqid 2196 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 10 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ω → 𝑛 ∈ ω) | |
| 11 | 8, 9, 10 | frec2uzuzd 10513 | . . . . 5 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ≥‘0)) |
| 12 | nn0uz 9655 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 13 | 11, 12 | eleqtrrdi 2290 | . . . 4 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
| 14 | 3, 13 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
| 15 | 7, 14 | eqeltrd 2273 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) ∈ ℕ0) |
| 16 | 2, 15 | rexlimddv 2619 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4034 ↦ cmpt 4095 ωcom 4627 ‘cfv 5259 (class class class)co 5925 freccfrec 6457 ≈ cen 6806 Fincfn 6808 0cc0 7898 1c1 7899 + caddc 7901 ℕ0cn0 9268 ℤcz 9345 ℤ≥cuz 9620 ♯chash 10886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 df-ihash 10887 |
| This theorem is referenced by: hashfiv01gt1 10893 filtinf 10902 isfinite4im 10903 fihashneq0 10905 hashnncl 10906 fihashssdif 10929 hashdifpr 10931 hashxp 10937 zfz1isolemsplit 10949 zfz1isolemiso 10950 zfz1isolem1 10951 fz1f1o 11559 fsumconst 11638 hashiun 11662 hash2iun1dif1 11664 fprodconst 11804 phival 12408 phicl2 12409 phiprmpw 12417 sumhashdc 12543 4sqlem11 12597 hashfinmndnn 13136 0sgm 15329 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 |
| Copyright terms: Public domain | W3C validator |