| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hashcl | GIF version | ||
| Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| hashcl | ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isfi 6820 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | 
| 3 | simprl 529 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ∈ ω) | |
| 4 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
| 5 | 4 | ensymd 6842 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≈ 𝐴) | 
| 6 | hashennn 10872 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑛 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) | |
| 7 | 3, 5, 6 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) | 
| 8 | 0zd 9338 | . . . . . 6 ⊢ (𝑛 ∈ ω → 0 ∈ ℤ) | |
| 9 | eqid 2196 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 10 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ω → 𝑛 ∈ ω) | |
| 11 | 8, 9, 10 | frec2uzuzd 10494 | . . . . 5 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ≥‘0)) | 
| 12 | nn0uz 9636 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 13 | 11, 12 | eleqtrrdi 2290 | . . . 4 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) | 
| 14 | 3, 13 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) | 
| 15 | 7, 14 | eqeltrd 2273 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) ∈ ℕ0) | 
| 16 | 2, 15 | rexlimddv 2619 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 ↦ cmpt 4094 ωcom 4626 ‘cfv 5258 (class class class)co 5922 freccfrec 6448 ≈ cen 6797 Fincfn 6799 0cc0 7879 1c1 7880 + caddc 7882 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ♯chash 10867 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-ihash 10868 | 
| This theorem is referenced by: hashfiv01gt1 10874 filtinf 10883 isfinite4im 10884 fihashneq0 10886 hashnncl 10887 fihashssdif 10910 hashdifpr 10912 hashxp 10918 zfz1isolemsplit 10930 zfz1isolemiso 10931 zfz1isolem1 10932 fz1f1o 11540 fsumconst 11619 hashiun 11643 hash2iun1dif1 11645 fprodconst 11785 phival 12381 phicl2 12382 phiprmpw 12390 sumhashdc 12516 4sqlem11 12570 hashfinmndnn 13073 0sgm 15221 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |