| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashcl | GIF version | ||
| Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashcl | ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6865 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | simprl 529 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ∈ ω) | |
| 4 | simprr 531 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝐴 ≈ 𝑛) | |
| 5 | 4 | ensymd 6888 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → 𝑛 ≈ 𝐴) |
| 6 | hashennn 10947 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑛 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) | |
| 7 | 3, 5, 6 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛)) |
| 8 | 0zd 9404 | . . . . . 6 ⊢ (𝑛 ∈ ω → 0 ∈ ℤ) | |
| 9 | eqid 2206 | . . . . . 6 ⊢ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 10 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ω → 𝑛 ∈ ω) | |
| 11 | 8, 9, 10 | frec2uzuzd 10569 | . . . . 5 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ (ℤ≥‘0)) |
| 12 | nn0uz 9703 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 13 | 11, 12 | eleqtrrdi 2300 | . . . 4 ⊢ (𝑛 ∈ ω → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
| 14 | 3, 13 | syl 14 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ∈ ℕ0) |
| 15 | 7, 14 | eqeltrd 2283 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (♯‘𝐴) ∈ ℕ0) |
| 16 | 2, 15 | rexlimddv 2629 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4051 ↦ cmpt 4113 ωcom 4646 ‘cfv 5280 (class class class)co 5957 freccfrec 6489 ≈ cen 6838 Fincfn 6840 0cc0 7945 1c1 7946 + caddc 7948 ℕ0cn0 9315 ℤcz 9392 ℤ≥cuz 9668 ♯chash 10942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-recs 6404 df-frec 6490 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-ihash 10943 |
| This theorem is referenced by: hashfiv01gt1 10949 filtinf 10958 isfinite4im 10959 fihashneq0 10961 hashnncl 10962 fihashssdif 10985 hashdifpr 10987 hashxp 10993 zfz1isolemsplit 11005 zfz1isolemiso 11006 zfz1isolem1 11007 ccatfvalfi 11071 ccatval2 11077 fz1f1o 11761 fsumconst 11840 hashiun 11864 hash2iun1dif1 11866 fprodconst 12006 phival 12610 phicl2 12611 phiprmpw 12619 sumhashdc 12745 4sqlem11 12799 hashfinmndnn 13339 0sgm 15532 lgsquadlem1 15629 lgsquadlem2 15630 lgsquadlem3 15631 |
| Copyright terms: Public domain | W3C validator |