ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbaglesuppg GIF version

Theorem psrbaglesuppg 13967
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesuppg ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝐺(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglesuppg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1041 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐹𝐷)
2 simpll 527 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐼𝑉)
3 psrbag.d . . . . . . . . . . 11 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbag 13964 . . . . . . . . . 10 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
52, 4syl 14 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
61, 5mpbid 147 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
76simpld 112 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐹:𝐼⟶ℕ0)
8 simpr 110 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥 ∈ (𝐺 “ ℕ))
9 simplr2 1042 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐺:𝐼⟶ℕ0)
109ffnd 5385 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐺 Fn 𝐼)
11 elpreima 5656 . . . . . . . . . 10 (𝐺 Fn 𝐼 → (𝑥 ∈ (𝐺 “ ℕ) ↔ (𝑥𝐼 ∧ (𝐺𝑥) ∈ ℕ)))
1210, 11syl 14 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝑥 ∈ (𝐺 “ ℕ) ↔ (𝑥𝐼 ∧ (𝐺𝑥) ∈ ℕ)))
138, 12mpbid 147 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝑥𝐼 ∧ (𝐺𝑥) ∈ ℕ))
1413simpld 112 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥𝐼)
157, 14ffvelcdmd 5673 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℕ0)
1615nn0zd 9404 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℤ)
17 1red 8003 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 1 ∈ ℝ)
18 ffun 5387 . . . . . . . . . 10 (𝐺:𝐼⟶ℕ0 → Fun 𝐺)
19183ad2ant2 1021 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹) → Fun 𝐺)
2019ad2antlr 489 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → Fun 𝐺)
21 fvimacnvi 5651 . . . . . . . 8 ((Fun 𝐺𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ∈ ℕ)
2220, 8, 21syl2anc 411 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ∈ ℕ)
2322nnred 8963 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ∈ ℝ)
2415nn0red 9261 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℝ)
2522nnge1d 8993 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 1 ≤ (𝐺𝑥))
26 simplr3 1043 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐺𝑟𝐹)
277ffnd 5385 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐹 Fn 𝐼)
28 inidm 3359 . . . . . . . 8 (𝐼𝐼) = 𝐼
29 eqidd 2190 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
30 eqidd 2190 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3110, 27, 2, 2, 28, 29, 30ofrval 6118 . . . . . . 7 ((((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) ∧ 𝐺𝑟𝐹𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
3226, 14, 31mpd3an23 1350 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ≤ (𝐹𝑥))
3317, 23, 24, 25, 32letrd 8112 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 1 ≤ (𝐹𝑥))
34 elnnz1 9307 . . . . 5 ((𝐹𝑥) ∈ ℕ ↔ ((𝐹𝑥) ∈ ℤ ∧ 1 ≤ (𝐹𝑥)))
3516, 33, 34sylanbrc 417 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℕ)
367ffund 5388 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → Fun 𝐹)
377fdmd 5391 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → dom 𝐹 = 𝐼)
3814, 37eleqtrrd 2269 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥 ∈ dom 𝐹)
39 fvimacnv 5652 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ ℕ ↔ 𝑥 ∈ (𝐹 “ ℕ)))
4036, 38, 39syl2anc 411 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → ((𝐹𝑥) ∈ ℕ ↔ 𝑥 ∈ (𝐹 “ ℕ)))
4135, 40mpbid 147 . . 3 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥 ∈ (𝐹 “ ℕ))
4241ex 115 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝑥 ∈ (𝐺 “ ℕ) → 𝑥 ∈ (𝐹 “ ℕ)))
4342ssrdv 3176 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  {crab 2472  wss 3144   class class class wbr 4018  ccnv 4643  dom cdm 4644  cima 4647  Fun wfun 5229   Fn wfn 5230  wf 5231  cfv 5235  (class class class)co 5897  𝑟 cofr 6106  𝑚 cmap 6675  Fincfn 6767  1c1 7843  cle 8024  cn 8950  0cn0 9207  cz 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-ofr 6108  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator