ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbaglesuppg GIF version

Theorem psrbaglesuppg 14158
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesuppg ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝐺(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglesuppg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1041 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐹𝐷)
2 simpll 527 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐼𝑉)
3 psrbag.d . . . . . . . . . . 11 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbag 14155 . . . . . . . . . 10 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
52, 4syl 14 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
61, 5mpbid 147 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
76simpld 112 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐹:𝐼⟶ℕ0)
8 simpr 110 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥 ∈ (𝐺 “ ℕ))
9 simplr2 1042 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐺:𝐼⟶ℕ0)
109ffnd 5404 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐺 Fn 𝐼)
11 elpreima 5677 . . . . . . . . . 10 (𝐺 Fn 𝐼 → (𝑥 ∈ (𝐺 “ ℕ) ↔ (𝑥𝐼 ∧ (𝐺𝑥) ∈ ℕ)))
1210, 11syl 14 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝑥 ∈ (𝐺 “ ℕ) ↔ (𝑥𝐼 ∧ (𝐺𝑥) ∈ ℕ)))
138, 12mpbid 147 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝑥𝐼 ∧ (𝐺𝑥) ∈ ℕ))
1413simpld 112 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥𝐼)
157, 14ffvelcdmd 5694 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℕ0)
1615nn0zd 9437 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℤ)
17 1red 8034 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 1 ∈ ℝ)
18 ffun 5406 . . . . . . . . . 10 (𝐺:𝐼⟶ℕ0 → Fun 𝐺)
19183ad2ant2 1021 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹) → Fun 𝐺)
2019ad2antlr 489 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → Fun 𝐺)
21 fvimacnvi 5672 . . . . . . . 8 ((Fun 𝐺𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ∈ ℕ)
2220, 8, 21syl2anc 411 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ∈ ℕ)
2322nnred 8995 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ∈ ℝ)
2415nn0red 9294 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℝ)
2522nnge1d 9025 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 1 ≤ (𝐺𝑥))
26 simplr3 1043 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐺𝑟𝐹)
277ffnd 5404 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝐹 Fn 𝐼)
28 inidm 3368 . . . . . . . 8 (𝐼𝐼) = 𝐼
29 eqidd 2194 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
30 eqidd 2194 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3110, 27, 2, 2, 28, 29, 30ofrval 6141 . . . . . . 7 ((((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) ∧ 𝐺𝑟𝐹𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
3226, 14, 31mpd3an23 1350 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐺𝑥) ≤ (𝐹𝑥))
3317, 23, 24, 25, 32letrd 8143 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 1 ≤ (𝐹𝑥))
34 elnnz1 9340 . . . . 5 ((𝐹𝑥) ∈ ℕ ↔ ((𝐹𝑥) ∈ ℤ ∧ 1 ≤ (𝐹𝑥)))
3516, 33, 34sylanbrc 417 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → (𝐹𝑥) ∈ ℕ)
367ffund 5407 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → Fun 𝐹)
377fdmd 5410 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → dom 𝐹 = 𝐼)
3814, 37eleqtrrd 2273 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥 ∈ dom 𝐹)
39 fvimacnv 5673 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ ℕ ↔ 𝑥 ∈ (𝐹 “ ℕ)))
4036, 38, 39syl2anc 411 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → ((𝐹𝑥) ∈ ℕ ↔ 𝑥 ∈ (𝐹 “ ℕ)))
4135, 40mpbid 147 . . 3 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐺 “ ℕ)) → 𝑥 ∈ (𝐹 “ ℕ))
4241ex 115 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝑥 ∈ (𝐺 “ ℕ) → 𝑥 ∈ (𝐹 “ ℕ)))
4342ssrdv 3185 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {crab 2476  wss 3153   class class class wbr 4029  ccnv 4658  dom cdm 4659  cima 4662  Fun wfun 5248   Fn wfn 5249  wf 5250  cfv 5254  (class class class)co 5918  𝑟 cofr 6129  𝑚 cmap 6702  Fincfn 6794  1c1 7873  cle 8055  cn 8982  0cn0 9240  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-ofr 6131  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator