Step | Hyp | Ref
| Expression |
1 | | simplr1 1041 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐹 ∈ 𝐷) |
2 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐼 ∈ 𝑉) |
3 | | psrbag.d |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
4 | 3 | psrbag 13964 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
5 | 2, 4 | syl 14 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
6 | 1, 5 | mpbid 147 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin)) |
7 | 6 | simpld 112 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐹:𝐼⟶ℕ0) |
8 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝑥 ∈ (◡𝐺 “ ℕ)) |
9 | | simplr2 1042 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐺:𝐼⟶ℕ0) |
10 | 9 | ffnd 5385 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐺 Fn 𝐼) |
11 | | elpreima 5656 |
. . . . . . . . . 10
⊢ (𝐺 Fn 𝐼 → (𝑥 ∈ (◡𝐺 “ ℕ) ↔ (𝑥 ∈ 𝐼 ∧ (𝐺‘𝑥) ∈ ℕ))) |
12 | 10, 11 | syl 14 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝑥 ∈ (◡𝐺 “ ℕ) ↔ (𝑥 ∈ 𝐼 ∧ (𝐺‘𝑥) ∈ ℕ))) |
13 | 8, 12 | mpbid 147 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝑥 ∈ 𝐼 ∧ (𝐺‘𝑥) ∈ ℕ)) |
14 | 13 | simpld 112 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝑥 ∈ 𝐼) |
15 | 7, 14 | ffvelcdmd 5673 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐹‘𝑥) ∈
ℕ0) |
16 | 15 | nn0zd 9404 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐹‘𝑥) ∈ ℤ) |
17 | | 1red 8003 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 1 ∈
ℝ) |
18 | | ffun 5387 |
. . . . . . . . . 10
⊢ (𝐺:𝐼⟶ℕ0 → Fun 𝐺) |
19 | 18 | 3ad2ant2 1021 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹) → Fun 𝐺) |
20 | 19 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → Fun 𝐺) |
21 | | fvimacnvi 5651 |
. . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐺‘𝑥) ∈ ℕ) |
22 | 20, 8, 21 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐺‘𝑥) ∈ ℕ) |
23 | 22 | nnred 8963 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐺‘𝑥) ∈ ℝ) |
24 | 15 | nn0red 9261 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐹‘𝑥) ∈ ℝ) |
25 | 22 | nnge1d 8993 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 1 ≤ (𝐺‘𝑥)) |
26 | | simplr3 1043 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐺 ∘𝑟 ≤ 𝐹) |
27 | 7 | ffnd 5385 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝐹 Fn 𝐼) |
28 | | inidm 3359 |
. . . . . . . 8
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
29 | | eqidd 2190 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
30 | | eqidd 2190 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
31 | 10, 27, 2, 2, 28, 29, 30 | ofrval 6118 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) ∧ 𝐺 ∘𝑟 ≤ 𝐹 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
32 | 26, 14, 31 | mpd3an23 1350 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
33 | 17, 23, 24, 25, 32 | letrd 8112 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 1 ≤ (𝐹‘𝑥)) |
34 | | elnnz1 9307 |
. . . . 5
⊢ ((𝐹‘𝑥) ∈ ℕ ↔ ((𝐹‘𝑥) ∈ ℤ ∧ 1 ≤ (𝐹‘𝑥))) |
35 | 16, 33, 34 | sylanbrc 417 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → (𝐹‘𝑥) ∈ ℕ) |
36 | 7 | ffund 5388 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → Fun 𝐹) |
37 | 7 | fdmd 5391 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → dom 𝐹 = 𝐼) |
38 | 14, 37 | eleqtrrd 2269 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝑥 ∈ dom 𝐹) |
39 | | fvimacnv 5652 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ ℕ ↔ 𝑥 ∈ (◡𝐹 “ ℕ))) |
40 | 36, 38, 39 | syl2anc 411 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → ((𝐹‘𝑥) ∈ ℕ ↔ 𝑥 ∈ (◡𝐹 “ ℕ))) |
41 | 35, 40 | mpbid 147 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) ∧ 𝑥 ∈ (◡𝐺 “ ℕ)) → 𝑥 ∈ (◡𝐹 “ ℕ)) |
42 | 41 | ex 115 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) → (𝑥 ∈ (◡𝐺 “ ℕ) → 𝑥 ∈ (◡𝐹 “ ℕ))) |
43 | 42 | ssrdv 3176 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟
≤ 𝐹)) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) |