![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseldi | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseldi.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
sseldi | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseldi.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 3043 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 ⊆ wss 3021 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-in 3027 df-ss 3034 |
This theorem is referenced by: mptrcl 5435 riotacl 5676 riotasbc 5677 elmpocl 5900 ofrval 5924 f1od2 6062 mpoxopn0yelv 6066 tpostpos 6091 smores 6119 supubti 6801 suplubti 6802 prarloclemcalc 7211 rereceu 7574 recriota 7575 rexrd 7687 eqord1 8112 nnred 8591 nncnd 8592 un0addcl 8862 un0mulcl 8863 nnnn0d 8882 nn0red 8883 nn0xnn0d 8901 suprzclex 9001 nn0zd 9023 zred 9025 rpred 9330 ige2m1fz 9731 zmodfzp1 9962 seq3caopr2 10096 expcl2lemap 10146 m1expcl 10157 summodclem2a 10989 zsumdc 10992 lcmn0cl 11542 ennnfonelemg 11708 lmrcl 12142 lmss 12196 upxp 12222 isxms2 12380 iooretopg 12450 tgqioo 12466 dvcl 12525 dvidlemap 12533 isomninnlem 12809 trilpolemeq1 12817 trilpolemlt1 12818 |
Copyright terms: Public domain | W3C validator |