| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0zd | GIF version | ||
| Description: A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) | 
| Ref | Expression | 
|---|---|
| nn0zd.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) | 
| Ref | Expression | 
|---|---|
| nn0zd | ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0ssz 9344 | . 2 ⊢ ℕ0 ⊆ ℤ | |
| 2 | nn0zd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 3 | 1, 2 | sselid 3181 | 1 ⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| Copyright terms: Public domain | W3C validator |