![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseldi | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
Ref | Expression |
---|---|
sseli.1 |
![]() ![]() ![]() ![]() |
sseldi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseldi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseldi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sseli.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseli 3057 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-in 3041 df-ss 3048 |
This theorem is referenced by: mptrcl 5455 riotacl 5696 riotasbc 5697 elmpocl 5920 ofrval 5944 f1od2 6084 mpoxopn0yelv 6088 tpostpos 6113 smores 6141 supubti 6836 suplubti 6837 prarloclemcalc 7252 rereceu 7618 recriota 7619 rexrd 7733 eqord1 8158 nnred 8637 nncnd 8638 un0addcl 8908 un0mulcl 8909 nnnn0d 8928 nn0red 8929 nn0xnn0d 8947 suprzclex 9047 nn0zd 9069 zred 9071 rpred 9376 ige2m1fz 9777 zmodfzp1 10008 seq3caopr2 10142 expcl2lemap 10192 m1expcl 10203 summodclem2a 11036 zsumdc 11039 lcmn0cl 11589 ennnfonelemg 11755 lmrcl 12197 lmss 12251 upxp 12277 isxms2 12435 iooretopg 12511 tgqioo 12527 dvcl 12601 dvidlemap 12609 dvcnp2cntop 12612 isomninnlem 12906 trilpolemeq1 12914 trilpolemlt1 12915 |
Copyright terms: Public domain | W3C validator |