| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvcl | GIF version | ||
| Description: The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| dvcl | ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl 15298 | . 2 ⊢ ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵) ⊆ ℂ | |
| 2 | eqid 2209 | . . . 4 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆) | |
| 3 | eqid 2209 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 4 | eqid 2209 | . . . 4 ⊢ (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
| 5 | dvcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | dvcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 7 | dvcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 8 | 2, 3, 4, 5, 6, 7 | eldvap 15321 | . . 3 ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ∧ 𝐶 ∈ ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)))) |
| 9 | 8 | simplbda 384 | . 2 ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) limℂ 𝐵)) |
| 10 | 1, 9 | sselid 3202 | 1 ⊢ ((𝜑 ∧ 𝐵(𝑆 D 𝐹)𝐶) → 𝐶 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 {crab 2492 ⊆ wss 3177 class class class wbr 4062 ↦ cmpt 4124 ∘ ccom 4700 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 − cmin 8285 # cap 8696 / cdiv 8787 abscabs 11474 ↾t crest 13238 MetOpencmopn 14470 intcnt 14732 limℂ climc 15293 D cdv 15294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-map 6767 df-pm 6768 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-xneg 9936 df-xadd 9937 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-rest 13240 df-topgen 13259 df-psmet 14472 df-xmet 14473 df-met 14474 df-bl 14475 df-mopn 14476 df-top 14637 df-topon 14650 df-bases 14682 df-ntr 14735 df-limced 15295 df-dvap 15296 |
| This theorem is referenced by: dvfgg 15327 dvcnp2cntop 15338 dvaddxxbr 15340 dvmulxxbr 15341 dvcoapbr 15346 |
| Copyright terms: Public domain | W3C validator |