| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvcn | GIF version | ||
| Description: A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| dvcn | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1025 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹:𝐴⟶ℂ) | |
| 2 | eqid 2229 | . . . . . 6 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝐴) = ((MetOpen‘(abs ∘ − )) ↾t 𝐴) | |
| 3 | eqid 2229 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 4 | 2, 3 | dvcnp2cntop 15367 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝑥 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) |
| 5 | 4 | ralrimiva 2603 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ∀𝑥 ∈ dom (𝑆 D 𝐹)𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) |
| 6 | raleq 2728 | . . . . 5 ⊢ (dom (𝑆 D 𝐹) = 𝐴 → (∀𝑥 ∈ dom (𝑆 D 𝐹)𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥))) | |
| 7 | 6 | biimpd 144 | . . . 4 ⊢ (dom (𝑆 D 𝐹) = 𝐴 → (∀𝑥 ∈ dom (𝑆 D 𝐹)𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥))) |
| 8 | 5, 7 | mpan9 281 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) |
| 9 | 3 | cntoptopon 15200 | . . . . 5 ⊢ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) |
| 10 | simpl3 1026 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐴 ⊆ 𝑆) | |
| 11 | simpl1 1024 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝑆 ⊆ ℂ) | |
| 12 | 10, 11 | sstrd 3234 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐴 ⊆ ℂ) |
| 13 | resttopon 14839 | . . . . 5 ⊢ (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 14 | 9, 12, 13 | sylancr 414 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 15 | cncnp 14898 | . . . 4 ⊢ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) | |
| 16 | 14, 9, 15 | sylancl 413 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) |
| 17 | 1, 8, 16 | mpbir2and 950 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
| 18 | ssid 3244 | . . 3 ⊢ ℂ ⊆ ℂ | |
| 19 | 9 | toponrestid 14689 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ) |
| 20 | 3, 2, 19 | cncfcncntop 15261 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
| 21 | 12, 18, 20 | sylancl 413 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
| 22 | 17, 21 | eleqtrrd 2309 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 dom cdm 4718 ∘ ccom 4722 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 − cmin 8313 abscabs 11503 ↾t crest 13267 MetOpencmopn 14499 TopOnctopon 14678 Cn ccn 14853 CnP ccnp 14854 –cn→ccncf 15238 D cdv 15323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-map 6795 df-pm 6796 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 |
| This theorem is referenced by: efcn 15436 |
| Copyright terms: Public domain | W3C validator |