![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvcn | GIF version |
Description: A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
dvcn | ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1001 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹:𝐴⟶ℂ) | |
2 | eqid 2177 | . . . . . 6 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝐴) = ((MetOpen‘(abs ∘ − )) ↾t 𝐴) | |
3 | eqid 2177 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
4 | 2, 3 | dvcnp2cntop 14056 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ 𝑥 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) |
5 | 4 | ralrimiva 2550 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ∀𝑥 ∈ dom (𝑆 D 𝐹)𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) |
6 | raleq 2672 | . . . . 5 ⊢ (dom (𝑆 D 𝐹) = 𝐴 → (∀𝑥 ∈ dom (𝑆 D 𝐹)𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥))) | |
7 | 6 | biimpd 144 | . . . 4 ⊢ (dom (𝑆 D 𝐹) = 𝐴 → (∀𝑥 ∈ dom (𝑆 D 𝐹)𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) → ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥))) |
8 | 5, 7 | mpan9 281 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) |
9 | 3 | cntoptopon 13925 | . . . . 5 ⊢ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) |
10 | simpl3 1002 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐴 ⊆ 𝑆) | |
11 | simpl1 1000 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝑆 ⊆ ℂ) | |
12 | 10, 11 | sstrd 3165 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐴 ⊆ ℂ) |
13 | resttopon 13564 | . . . . 5 ⊢ (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
14 | 9, 12, 13 | sylancr 414 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴)) |
15 | cncnp 13623 | . . . 4 ⊢ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) | |
16 | 14, 9, 15 | sylancl 413 | . . 3 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)))) |
17 | 1, 8, 16 | mpbir2and 944 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
18 | ssid 3175 | . . 3 ⊢ ℂ ⊆ ℂ | |
19 | 9 | toponrestid 13412 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ) |
20 | 3, 2, 19 | cncfcncntop 13973 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
21 | 12, 18, 20 | sylancl 413 | . 2 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → (𝐴–cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))) |
22 | 17, 21 | eleqtrrd 2257 | 1 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3129 dom cdm 4626 ∘ ccom 4630 ⟶wf 5212 ‘cfv 5216 (class class class)co 5874 ℂcc 7808 − cmin 8126 abscabs 11001 ↾t crest 12678 MetOpencmopn 13336 TopOnctopon 13401 Cn ccn 13578 CnP ccnp 13579 –cn→ccncf 13950 D cdv 14017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 ax-addf 7932 ax-mulf 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-isom 5225 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-map 6649 df-pm 6650 df-sup 6982 df-inf 6983 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-reap 8530 df-ap 8537 df-div 8628 df-inn 8918 df-2 8976 df-3 8977 df-4 8978 df-n0 9175 df-z 9252 df-uz 9527 df-q 9618 df-rp 9652 df-xneg 9770 df-xadd 9771 df-seqfrec 10443 df-exp 10517 df-cj 10846 df-re 10847 df-im 10848 df-rsqrt 11002 df-abs 11003 df-rest 12680 df-topgen 12699 df-psmet 13338 df-xmet 13339 df-met 13340 df-bl 13341 df-mopn 13342 df-top 13389 df-topon 13402 df-bases 13434 df-ntr 13489 df-cn 13581 df-cnp 13582 df-tx 13646 df-cncf 13951 df-limced 14018 df-dvap 14019 |
This theorem is referenced by: efcn 14082 |
Copyright terms: Public domain | W3C validator |