| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprsubrg | Structured version Visualization version GIF version | ||
| Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprsubrg.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprsubrg | ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 20485 | . . 3 ⊢ (𝑥 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 2 | subrgrcl 20485 | . . . 4 ⊢ (𝑥 ∈ (SubRing‘𝑂) → 𝑂 ∈ Ring) | |
| 3 | opprsubrg.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | 3 | opprringb 20257 | . . . 4 ⊢ (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring) |
| 5 | 2, 4 | sylibr 234 | . . 3 ⊢ (𝑥 ∈ (SubRing‘𝑂) → 𝑅 ∈ Ring) |
| 6 | 3 | opprsubg 20261 | . . . . . . 7 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
| 8 | 7 | eleq2d 2814 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
| 9 | ralcom 3265 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) | |
| 10 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | eqid 2729 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 13 | 10, 11, 3, 12 | opprmul 20249 | . . . . . . . . 9 ⊢ (𝑧(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑧) |
| 14 | 13 | eleq1i 2819 | . . . . . . . 8 ⊢ ((𝑧(.r‘𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) |
| 15 | 14 | 2ralbii 3108 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) |
| 16 | 9, 15 | bitr4i 278 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥) |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥)) |
| 18 | 8, 17 | 3anbi13d 1440 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝑥 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
| 19 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 20 | 10, 19, 11 | issubrg2 20501 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥))) |
| 21 | 3, 10 | opprbas 20252 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 22 | 3, 19 | oppr1 20259 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑂) |
| 23 | 21, 22, 12 | issubrg2 20501 | . . . . 5 ⊢ (𝑂 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
| 24 | 4, 23 | sylbi 217 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
| 25 | 18, 20, 24 | 3bitr4d 311 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂))) |
| 26 | 1, 5, 25 | pm5.21nii 378 | . 2 ⊢ (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂)) |
| 27 | 26 | eqriv 2726 | 1 ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 SubGrpcsubg 19052 1rcur 20090 Ringcrg 20142 opprcoppr 20245 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-subrng 20455 df-subrg 20479 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |