Step | Hyp | Ref
| Expression |
1 | | subrgrcl 20467 |
. . 3
β’ (π₯ β (SubRingβπ
) β π
β Ring) |
2 | | subrgrcl 20467 |
. . . 4
β’ (π₯ β (SubRingβπ) β π β Ring) |
3 | | opprsubrg.o |
. . . . 5
β’ π =
(opprβπ
) |
4 | 3 | opprringb 20240 |
. . . 4
β’ (π
β Ring β π β Ring) |
5 | 2, 4 | sylibr 233 |
. . 3
β’ (π₯ β (SubRingβπ) β π
β Ring) |
6 | 3 | opprsubg 20244 |
. . . . . . 7
β’
(SubGrpβπ
) =
(SubGrpβπ) |
7 | 6 | a1i 11 |
. . . . . 6
β’ (π
β Ring β
(SubGrpβπ
) =
(SubGrpβπ)) |
8 | 7 | eleq2d 2818 |
. . . . 5
β’ (π
β Ring β (π₯ β (SubGrpβπ
) β π₯ β (SubGrpβπ))) |
9 | | ralcom 3285 |
. . . . . . 7
β’
(βπ¦ β
π₯ βπ§ β π₯ (π¦(.rβπ
)π§) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π¦(.rβπ
)π§) β π₯) |
10 | | eqid 2731 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβπ
) |
11 | | eqid 2731 |
. . . . . . . . . 10
β’
(.rβπ
) = (.rβπ
) |
12 | | eqid 2731 |
. . . . . . . . . 10
β’
(.rβπ) = (.rβπ) |
13 | 10, 11, 3, 12 | opprmul 20229 |
. . . . . . . . 9
β’ (π§(.rβπ)π¦) = (π¦(.rβπ
)π§) |
14 | 13 | eleq1i 2823 |
. . . . . . . 8
β’ ((π§(.rβπ)π¦) β π₯ β (π¦(.rβπ
)π§) β π₯) |
15 | 14 | 2ralbii 3127 |
. . . . . . 7
β’
(βπ§ β
π₯ βπ¦ β π₯ (π§(.rβπ)π¦) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π¦(.rβπ
)π§) β π₯) |
16 | 9, 15 | bitr4i 277 |
. . . . . 6
β’
(βπ¦ β
π₯ βπ§ β π₯ (π¦(.rβπ
)π§) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π§(.rβπ)π¦) β π₯) |
17 | 16 | a1i 11 |
. . . . 5
β’ (π
β Ring β
(βπ¦ β π₯ βπ§ β π₯ (π¦(.rβπ
)π§) β π₯ β βπ§ β π₯ βπ¦ β π₯ (π§(.rβπ)π¦) β π₯)) |
18 | 8, 17 | 3anbi13d 1437 |
. . . 4
β’ (π
β Ring β ((π₯ β (SubGrpβπ
) β§
(1rβπ
)
β π₯ β§
βπ¦ β π₯ βπ§ β π₯ (π¦(.rβπ
)π§) β π₯) β (π₯ β (SubGrpβπ) β§ (1rβπ
) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(.rβπ)π¦) β π₯))) |
19 | | eqid 2731 |
. . . . 5
β’
(1rβπ
) = (1rβπ
) |
20 | 10, 19, 11 | issubrg2 20483 |
. . . 4
β’ (π
β Ring β (π₯ β (SubRingβπ
) β (π₯ β (SubGrpβπ
) β§ (1rβπ
) β π₯ β§ βπ¦ β π₯ βπ§ β π₯ (π¦(.rβπ
)π§) β π₯))) |
21 | 3, 10 | opprbas 20233 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ) |
22 | 3, 19 | oppr1 20242 |
. . . . . 6
β’
(1rβπ
) = (1rβπ) |
23 | 21, 22, 12 | issubrg2 20483 |
. . . . 5
β’ (π β Ring β (π₯ β (SubRingβπ) β (π₯ β (SubGrpβπ) β§ (1rβπ
) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(.rβπ)π¦) β π₯))) |
24 | 4, 23 | sylbi 216 |
. . . 4
β’ (π
β Ring β (π₯ β (SubRingβπ) β (π₯ β (SubGrpβπ) β§ (1rβπ
) β π₯ β§ βπ§ β π₯ βπ¦ β π₯ (π§(.rβπ)π¦) β π₯))) |
25 | 18, 20, 24 | 3bitr4d 310 |
. . 3
β’ (π
β Ring β (π₯ β (SubRingβπ
) β π₯ β (SubRingβπ))) |
26 | 1, 5, 25 | pm5.21nii 378 |
. 2
β’ (π₯ β (SubRingβπ
) β π₯ β (SubRingβπ)) |
27 | 26 | eqriv 2728 |
1
β’
(SubRingβπ
) =
(SubRingβπ) |