MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubrg Structured version   Visualization version   GIF version

Theorem opprsubrg 19084
Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprsubrg.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubrg (SubRing‘𝑅) = (SubRing‘𝑂)

Proof of Theorem opprsubrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgrcl 19068 . . 3 (𝑥 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
2 subrgrcl 19068 . . . 4 (𝑥 ∈ (SubRing‘𝑂) → 𝑂 ∈ Ring)
3 opprsubrg.o . . . . 5 𝑂 = (oppr𝑅)
43opprringb 18913 . . . 4 (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)
52, 4sylibr 225 . . 3 (𝑥 ∈ (SubRing‘𝑂) → 𝑅 ∈ Ring)
63opprsubg 18917 . . . . . . 7 (SubGrp‘𝑅) = (SubGrp‘𝑂)
76a1i 11 . . . . . 6 (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘𝑂))
87eleq2d 2830 . . . . 5 (𝑅 ∈ Ring → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
9 ralcom 3245 . . . . . . 7 (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥)
10 eqid 2765 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2765 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
12 eqid 2765 . . . . . . . . . 10 (.r𝑂) = (.r𝑂)
1310, 11, 3, 12opprmul 18907 . . . . . . . . 9 (𝑧(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑧)
1413eleq1i 2835 . . . . . . . 8 ((𝑧(.r𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(.r𝑅)𝑧) ∈ 𝑥)
15142ralbii 3128 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥)
169, 15bitr4i 269 . . . . . 6 (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑂)𝑦) ∈ 𝑥)
1716a1i 11 . . . . 5 (𝑅 ∈ Ring → (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑂)𝑦) ∈ 𝑥))
188, 173anbi13d 1562 . . . 4 (𝑅 ∈ Ring → ((𝑥 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r𝑅) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑂)𝑦) ∈ 𝑥)))
19 eqid 2765 . . . . 5 (1r𝑅) = (1r𝑅)
2010, 19, 11issubrg2 19083 . . . 4 (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑅)𝑧) ∈ 𝑥)))
213, 10opprbas 18910 . . . . . 6 (Base‘𝑅) = (Base‘𝑂)
223, 19oppr1 18915 . . . . . 6 (1r𝑅) = (1r𝑂)
2321, 22, 12issubrg2 19083 . . . . 5 (𝑂 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r𝑅) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑂)𝑦) ∈ 𝑥)))
244, 23sylbi 208 . . . 4 (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r𝑅) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑂)𝑦) ∈ 𝑥)))
2518, 20, 243bitr4d 302 . . 3 (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂)))
261, 5, 25pm5.21nii 369 . 2 (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂))
2726eqriv 2762 1 (SubRing‘𝑅) = (SubRing‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 197  w3a 1107   = wceq 1652  wcel 2155  wral 3055  cfv 6070  (class class class)co 6846  Basecbs 16144  .rcmulr 16229  SubGrpcsubg 17866  1rcur 18782  Ringcrg 18828  opprcoppr 18903  SubRingcsubrg 19059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-tpos 7559  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-3 11340  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-0g 16382  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-grp 17706  df-subg 17869  df-mgp 18771  df-ur 18783  df-ring 18830  df-oppr 18904  df-subrg 19061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator