MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1olem Structured version   Visualization version   GIF version

Theorem eff1olem 26502
Description: The exponential function maps the set 𝑆, of complex numbers with imaginary part in a real interval of length 2 · π, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
eff1olem.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
eff1olem.2 𝑆 = (ℑ “ 𝐷)
eff1olem.3 (𝜑𝐷 ⊆ ℝ)
eff1olem.4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
eff1olem.5 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Assertion
Ref Expression
eff1olem (𝜑 → (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0}))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐷   𝑥,𝐹,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑆(𝑧,𝑤)   𝐹(𝑤)

Proof of Theorem eff1olem
StepHypRef Expression
1 cnvimass 6090 . . . 4 (ℑ “ 𝐷) ⊆ dom ℑ
2 eff1olem.2 . . . 4 𝑆 = (ℑ “ 𝐷)
3 imf 15100 . . . . . 6 ℑ:ℂ⟶ℝ
43fdmi 6739 . . . . 5 dom ℑ = ℂ
54eqcomi 2737 . . . 4 ℂ = dom ℑ
61, 2, 53sstr4i 4025 . . 3 𝑆 ⊆ ℂ
7 eff2 16083 . . . . . . 7 exp:ℂ⟶(ℂ ∖ {0})
87a1i 11 . . . . . 6 (𝑆 ⊆ ℂ → exp:ℂ⟶(ℂ ∖ {0}))
98feqmptd 6972 . . . . 5 (𝑆 ⊆ ℂ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
109reseq1d 5988 . . . 4 (𝑆 ⊆ ℂ → (exp ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘𝑦)) ↾ 𝑆))
11 resmpt 6046 . . . 4 (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (exp‘𝑦)))
1210, 11eqtrd 2768 . . 3 (𝑆 ⊆ ℂ → (exp ↾ 𝑆) = (𝑦𝑆 ↦ (exp‘𝑦)))
136, 12ax-mp 5 . 2 (exp ↾ 𝑆) = (𝑦𝑆 ↦ (exp‘𝑦))
146sseli 3978 . . . 4 (𝑦𝑆𝑦 ∈ ℂ)
157ffvelcdmi 7098 . . . 4 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ (ℂ ∖ {0}))
1614, 15syl 17 . . 3 (𝑦𝑆 → (exp‘𝑦) ∈ (ℂ ∖ {0}))
1716adantl 480 . 2 ((𝜑𝑦𝑆) → (exp‘𝑦) ∈ (ℂ ∖ {0}))
18 simpr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ (ℂ ∖ {0}))
19 eldifsn 4795 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2018, 19sylib 217 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2120simpld 493 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
2220simprd 494 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
2321, 22absrpcld 15435 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ+)
24 reeff1o 26404 . . . . . . . . 9 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
25 f1ocnv 6856 . . . . . . . . 9 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+(exp ↾ ℝ):ℝ+1-1-onto→ℝ)
26 f1of 6844 . . . . . . . . 9 ((exp ↾ ℝ):ℝ+1-1-onto→ℝ → (exp ↾ ℝ):ℝ+⟶ℝ)
2724, 25, 26mp2b 10 . . . . . . . 8 (exp ↾ ℝ):ℝ+⟶ℝ
2827ffvelcdmi 7098 . . . . . . 7 ((abs‘𝑥) ∈ ℝ+ → ((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℝ)
2923, 28syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℝ)
3029recnd 11280 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℂ)
31 ax-icn 11205 . . . . . 6 i ∈ ℂ
32 eff1olem.3 . . . . . . . . 9 (𝜑𝐷 ⊆ ℝ)
3332adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷 ⊆ ℝ)
34 eff1olem.1 . . . . . . . . . . . 12 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
35 eqid 2728 . . . . . . . . . . . 12 (abs “ {1}) = (abs “ {1})
36 eff1olem.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
37 eff1olem.5 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
38 eqid 2728 . . . . . . . . . . . 12 (sin ↾ (-(π / 2)[,](π / 2))) = (sin ↾ (-(π / 2)[,](π / 2)))
3934, 35, 32, 36, 37, 38efif1olem4 26499 . . . . . . . . . . 11 (𝜑𝐹:𝐷1-1-onto→(abs “ {1}))
40 f1ocnv 6856 . . . . . . . . . . 11 (𝐹:𝐷1-1-onto→(abs “ {1}) → 𝐹:(abs “ {1})–1-1-onto𝐷)
41 f1of 6844 . . . . . . . . . . 11 (𝐹:(abs “ {1})–1-1-onto𝐷𝐹:(abs “ {1})⟶𝐷)
4239, 40, 413syl 18 . . . . . . . . . 10 (𝜑𝐹:(abs “ {1})⟶𝐷)
4342adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐹:(abs “ {1})⟶𝐷)
4421abscld 15423 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
4544recnd 11280 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
4621, 22absne0d 15434 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ≠ 0)
4721, 45, 46divcld 12028 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑥 / (abs‘𝑥)) ∈ ℂ)
4821, 45, 46absdivd 15442 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘(𝑥 / (abs‘𝑥))) = ((abs‘𝑥) / (abs‘(abs‘𝑥))))
49 absidm 15310 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (abs‘(abs‘𝑥)) = (abs‘𝑥))
5021, 49syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘(abs‘𝑥)) = (abs‘𝑥))
5150oveq2d 7442 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((abs‘𝑥) / (abs‘(abs‘𝑥))) = ((abs‘𝑥) / (abs‘𝑥)))
5245, 46dividd 12026 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((abs‘𝑥) / (abs‘𝑥)) = 1)
5348, 51, 523eqtrd 2772 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘(𝑥 / (abs‘𝑥))) = 1)
54 absf 15324 . . . . . . . . . . 11 abs:ℂ⟶ℝ
55 ffn 6727 . . . . . . . . . . 11 (abs:ℂ⟶ℝ → abs Fn ℂ)
56 fniniseg 7074 . . . . . . . . . . 11 (abs Fn ℂ → ((𝑥 / (abs‘𝑥)) ∈ (abs “ {1}) ↔ ((𝑥 / (abs‘𝑥)) ∈ ℂ ∧ (abs‘(𝑥 / (abs‘𝑥))) = 1)))
5754, 55, 56mp2b 10 . . . . . . . . . 10 ((𝑥 / (abs‘𝑥)) ∈ (abs “ {1}) ↔ ((𝑥 / (abs‘𝑥)) ∈ ℂ ∧ (abs‘(𝑥 / (abs‘𝑥))) = 1))
5847, 53, 57sylanbrc 581 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑥 / (abs‘𝑥)) ∈ (abs “ {1}))
5943, 58ffvelcdmd 7100 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝑥 / (abs‘𝑥))) ∈ 𝐷)
6033, 59sseldd 3983 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℝ)
6160recnd 11280 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℂ)
62 mulcl 11230 . . . . . 6 ((i ∈ ℂ ∧ (𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℂ) → (i · (𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ)
6331, 61, 62sylancr 585 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (i · (𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ)
6430, 63addcld 11271 . . . 4 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ)
6529, 60crimd 15219 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = (𝐹‘(𝑥 / (abs‘𝑥))))
6665, 59eqeltrd 2829 . . . 4 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷)
67 ffn 6727 . . . . 5 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
68 elpreima 7072 . . . . 5 (ℑ Fn ℂ → ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (ℑ “ 𝐷) ↔ ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ ∧ (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷)))
693, 67, 68mp2b 10 . . . 4 ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (ℑ “ 𝐷) ↔ ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ ∧ (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷))
7064, 66, 69sylanbrc 581 . . 3 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (ℑ “ 𝐷))
7170, 2eleqtrrdi 2840 . 2 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ 𝑆)
72 efadd 16078 . . . . . . 7 ((((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℂ ∧ (i · (𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ) → (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = ((exp‘((exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
7330, 63, 72syl2anc 582 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = ((exp‘((exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
7429fvresd 6922 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(abs‘𝑥))) = (exp‘((exp ↾ ℝ)‘(abs‘𝑥))))
75 f1ocnvfv2 7292 . . . . . . . . 9 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ (abs‘𝑥) ∈ ℝ+) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥))
7624, 23, 75sylancr 585 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥))
7774, 76eqtr3d 2770 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (exp‘((exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥))
78 oveq2 7434 . . . . . . . . . . 11 (𝑧 = (𝐹‘(𝑥 / (abs‘𝑥))) → (i · 𝑧) = (i · (𝐹‘(𝑥 / (abs‘𝑥)))))
7978fveq2d 6906 . . . . . . . . . 10 (𝑧 = (𝐹‘(𝑥 / (abs‘𝑥))) → (exp‘(i · 𝑧)) = (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))))
80 oveq2 7434 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (i · 𝑤) = (i · 𝑧))
8180fveq2d 6906 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (exp‘(i · 𝑤)) = (exp‘(i · 𝑧)))
8281cbvmptv 5265 . . . . . . . . . . 11 (𝑤𝐷 ↦ (exp‘(i · 𝑤))) = (𝑧𝐷 ↦ (exp‘(i · 𝑧)))
8334, 82eqtri 2756 . . . . . . . . . 10 𝐹 = (𝑧𝐷 ↦ (exp‘(i · 𝑧)))
84 fvex 6915 . . . . . . . . . 10 (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ V
8579, 83, 84fvmpt 7010 . . . . . . . . 9 ((𝐹‘(𝑥 / (abs‘𝑥))) ∈ 𝐷 → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))))
8659, 85syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))))
8739adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐹:𝐷1-1-onto→(abs “ {1}))
88 f1ocnvfv2 7292 . . . . . . . . 9 ((𝐹:𝐷1-1-onto→(abs “ {1}) ∧ (𝑥 / (abs‘𝑥)) ∈ (abs “ {1})) → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (𝑥 / (abs‘𝑥)))
8987, 58, 88syl2anc 582 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (𝑥 / (abs‘𝑥)))
9086, 89eqtr3d 2770 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))) = (𝑥 / (abs‘𝑥)))
9177, 90oveq12d 7444 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp‘((exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = ((abs‘𝑥) · (𝑥 / (abs‘𝑥))))
9221, 45, 46divcan2d 12030 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((abs‘𝑥) · (𝑥 / (abs‘𝑥))) = 𝑥)
9373, 91, 923eqtrrd 2773 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
9493adantrl 714 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → 𝑥 = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
95 fveq2 6902 . . . . 5 (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) → (exp‘𝑦) = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
9695eqeq2d 2739 . . . 4 (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) → (𝑥 = (exp‘𝑦) ↔ 𝑥 = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))))))
9794, 96syl5ibrcom 246 . . 3 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) → 𝑥 = (exp‘𝑦)))
9814adantl 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
9998replimd 15184 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
100 absef 16181 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘(exp‘𝑦)) = (exp‘(ℜ‘𝑦)))
10198, 100syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (abs‘(exp‘𝑦)) = (exp‘(ℜ‘𝑦)))
10298recld 15181 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (ℜ‘𝑦) ∈ ℝ)
103102fvresd 6922 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘(ℜ‘𝑦)) = (exp‘(ℜ‘𝑦)))
104101, 103eqtr4d 2771 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘(exp‘𝑦)) = ((exp ↾ ℝ)‘(ℜ‘𝑦)))
105104fveq2d 6906 . . . . . . . 8 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) = ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))))
106 f1ocnvfv1 7291 . . . . . . . . 9 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ (ℜ‘𝑦) ∈ ℝ) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))) = (ℜ‘𝑦))
10724, 102, 106sylancr 585 . . . . . . . 8 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))) = (ℜ‘𝑦))
108105, 107eqtrd 2768 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) = (ℜ‘𝑦))
10998imcld 15182 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (ℑ‘𝑦) ∈ ℝ)
110109recnd 11280 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (ℑ‘𝑦) ∈ ℂ)
111 mulcl 11230 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝑦) ∈ ℂ) → (i · (ℑ‘𝑦)) ∈ ℂ)
11231, 110, 111sylancr 585 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (i · (ℑ‘𝑦)) ∈ ℂ)
113 efcl 16066 . . . . . . . . . . . . 13 ((i · (ℑ‘𝑦)) ∈ ℂ → (exp‘(i · (ℑ‘𝑦))) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘(i · (ℑ‘𝑦))) ∈ ℂ)
115102recnd 11280 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (ℜ‘𝑦) ∈ ℂ)
116 efcl 16066 . . . . . . . . . . . . 13 ((ℜ‘𝑦) ∈ ℂ → (exp‘(ℜ‘𝑦)) ∈ ℂ)
117115, 116syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘(ℜ‘𝑦)) ∈ ℂ)
118 efne0 16081 . . . . . . . . . . . . 13 ((ℜ‘𝑦) ∈ ℂ → (exp‘(ℜ‘𝑦)) ≠ 0)
119115, 118syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘(ℜ‘𝑦)) ≠ 0)
120114, 117, 119divcan3d 12033 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))) / (exp‘(ℜ‘𝑦))) = (exp‘(i · (ℑ‘𝑦))))
12199fveq2d 6906 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (exp‘𝑦) = (exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))))
122 efadd 16078 . . . . . . . . . . . . . 14 (((ℜ‘𝑦) ∈ ℂ ∧ (i · (ℑ‘𝑦)) ∈ ℂ) → (exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) = ((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))))
123115, 112, 122syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) = ((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))))
124121, 123eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘𝑦) = ((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))))
125124, 101oveq12d 7444 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((exp‘𝑦) / (abs‘(exp‘𝑦))) = (((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))) / (exp‘(ℜ‘𝑦))))
126 elpreima 7072 . . . . . . . . . . . . . . . 16 (ℑ Fn ℂ → (𝑦 ∈ (ℑ “ 𝐷) ↔ (𝑦 ∈ ℂ ∧ (ℑ‘𝑦) ∈ 𝐷)))
1273, 67, 126mp2b 10 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℑ “ 𝐷) ↔ (𝑦 ∈ ℂ ∧ (ℑ‘𝑦) ∈ 𝐷))
128127simprbi 495 . . . . . . . . . . . . . 14 (𝑦 ∈ (ℑ “ 𝐷) → (ℑ‘𝑦) ∈ 𝐷)
129128, 2eleq2s 2847 . . . . . . . . . . . . 13 (𝑦𝑆 → (ℑ‘𝑦) ∈ 𝐷)
130129adantl 480 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (ℑ‘𝑦) ∈ 𝐷)
131 oveq2 7434 . . . . . . . . . . . . . 14 (𝑤 = (ℑ‘𝑦) → (i · 𝑤) = (i · (ℑ‘𝑦)))
132131fveq2d 6906 . . . . . . . . . . . . 13 (𝑤 = (ℑ‘𝑦) → (exp‘(i · 𝑤)) = (exp‘(i · (ℑ‘𝑦))))
133 fvex 6915 . . . . . . . . . . . . 13 (exp‘(i · (ℑ‘𝑦))) ∈ V
134132, 34, 133fvmpt 7010 . . . . . . . . . . . 12 ((ℑ‘𝑦) ∈ 𝐷 → (𝐹‘(ℑ‘𝑦)) = (exp‘(i · (ℑ‘𝑦))))
135130, 134syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐹‘(ℑ‘𝑦)) = (exp‘(i · (ℑ‘𝑦))))
136120, 125, 1353eqtr4d 2778 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((exp‘𝑦) / (abs‘(exp‘𝑦))) = (𝐹‘(ℑ‘𝑦)))
137136fveq2d 6906 . . . . . . . . 9 ((𝜑𝑦𝑆) → (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))) = (𝐹‘(𝐹‘(ℑ‘𝑦))))
138 f1ocnvfv1 7291 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(abs “ {1}) ∧ (ℑ‘𝑦) ∈ 𝐷) → (𝐹‘(𝐹‘(ℑ‘𝑦))) = (ℑ‘𝑦))
13939, 129, 138syl2an 594 . . . . . . . . 9 ((𝜑𝑦𝑆) → (𝐹‘(𝐹‘(ℑ‘𝑦))) = (ℑ‘𝑦))
140137, 139eqtrd 2768 . . . . . . . 8 ((𝜑𝑦𝑆) → (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))) = (ℑ‘𝑦))
141140oveq2d 7442 . . . . . . 7 ((𝜑𝑦𝑆) → (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))) = (i · (ℑ‘𝑦)))
142108, 141oveq12d 7444 . . . . . 6 ((𝜑𝑦𝑆) → (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))) = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14399, 142eqtr4d 2771 . . . . 5 ((𝜑𝑦𝑆) → 𝑦 = (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))))
144 fveq2 6902 . . . . . . . 8 (𝑥 = (exp‘𝑦) → (abs‘𝑥) = (abs‘(exp‘𝑦)))
145144fveq2d 6906 . . . . . . 7 (𝑥 = (exp‘𝑦) → ((exp ↾ ℝ)‘(abs‘𝑥)) = ((exp ↾ ℝ)‘(abs‘(exp‘𝑦))))
146 id 22 . . . . . . . . . 10 (𝑥 = (exp‘𝑦) → 𝑥 = (exp‘𝑦))
147146, 144oveq12d 7444 . . . . . . . . 9 (𝑥 = (exp‘𝑦) → (𝑥 / (abs‘𝑥)) = ((exp‘𝑦) / (abs‘(exp‘𝑦))))
148147fveq2d 6906 . . . . . . . 8 (𝑥 = (exp‘𝑦) → (𝐹‘(𝑥 / (abs‘𝑥))) = (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))
149148oveq2d 7442 . . . . . . 7 (𝑥 = (exp‘𝑦) → (i · (𝐹‘(𝑥 / (abs‘𝑥)))) = (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))))
150145, 149oveq12d 7444 . . . . . 6 (𝑥 = (exp‘𝑦) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) = (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))))
151150eqeq2d 2739 . . . . 5 (𝑥 = (exp‘𝑦) → (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ↔ 𝑦 = (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))))))
152143, 151syl5ibrcom 246 . . . 4 ((𝜑𝑦𝑆) → (𝑥 = (exp‘𝑦) → 𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
153152adantrr 715 . . 3 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → (𝑥 = (exp‘𝑦) → 𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
15497, 153impbid 211 . 2 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ↔ 𝑥 = (exp‘𝑦)))
15513, 17, 71, 154f1o2d 7681 1 (𝜑 → (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  wrex 3067  cdif 3946  wss 3949  {csn 4632   class class class wbr 5152  cmpt 5235  ccnv 5681  dom cdm 5682  cres 5684  cima 5685   Fn wfn 6548  wf 6549  1-1-ontowf1o 6552  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  1c1 11147  ici 11148   + caddc 11149   · cmul 11151   < clt 11286  cmin 11482  -cneg 11483   / cdiv 11909  2c2 12305  cz 12596  +crp 13014  [,]cicc 13367  cre 15084  cim 15085  abscabs 15221  expce 16045  sincsin 16047  πcpi 16050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-limc 25815  df-dv 25816
This theorem is referenced by:  eff1o  26503
  Copyright terms: Public domain W3C validator