MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1olem Structured version   Visualization version   GIF version

Theorem eff1olem 26608
Description: The exponential function maps the set 𝑆, of complex numbers with imaginary part in a real interval of length 2 · π, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
eff1olem.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
eff1olem.2 𝑆 = (ℑ “ 𝐷)
eff1olem.3 (𝜑𝐷 ⊆ ℝ)
eff1olem.4 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
eff1olem.5 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Assertion
Ref Expression
eff1olem (𝜑 → (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0}))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐷   𝑥,𝐹,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑆(𝑧,𝑤)   𝐹(𝑤)

Proof of Theorem eff1olem
StepHypRef Expression
1 cnvimass 6111 . . . 4 (ℑ “ 𝐷) ⊆ dom ℑ
2 eff1olem.2 . . . 4 𝑆 = (ℑ “ 𝐷)
3 imf 15162 . . . . . 6 ℑ:ℂ⟶ℝ
43fdmi 6758 . . . . 5 dom ℑ = ℂ
54eqcomi 2749 . . . 4 ℂ = dom ℑ
61, 2, 53sstr4i 4052 . . 3 𝑆 ⊆ ℂ
7 eff2 16147 . . . . . . 7 exp:ℂ⟶(ℂ ∖ {0})
87a1i 11 . . . . . 6 (𝑆 ⊆ ℂ → exp:ℂ⟶(ℂ ∖ {0}))
98feqmptd 6990 . . . . 5 (𝑆 ⊆ ℂ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
109reseq1d 6008 . . . 4 (𝑆 ⊆ ℂ → (exp ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘𝑦)) ↾ 𝑆))
11 resmpt 6066 . . . 4 (𝑆 ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘𝑦)) ↾ 𝑆) = (𝑦𝑆 ↦ (exp‘𝑦)))
1210, 11eqtrd 2780 . . 3 (𝑆 ⊆ ℂ → (exp ↾ 𝑆) = (𝑦𝑆 ↦ (exp‘𝑦)))
136, 12ax-mp 5 . 2 (exp ↾ 𝑆) = (𝑦𝑆 ↦ (exp‘𝑦))
146sseli 4004 . . . 4 (𝑦𝑆𝑦 ∈ ℂ)
157ffvelcdmi 7117 . . . 4 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ (ℂ ∖ {0}))
1614, 15syl 17 . . 3 (𝑦𝑆 → (exp‘𝑦) ∈ (ℂ ∖ {0}))
1716adantl 481 . 2 ((𝜑𝑦𝑆) → (exp‘𝑦) ∈ (ℂ ∖ {0}))
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ (ℂ ∖ {0}))
19 eldifsn 4811 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2018, 19sylib 218 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
2120simpld 494 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
2220simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
2321, 22absrpcld 15497 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ+)
24 reeff1o 26509 . . . . . . . . 9 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
25 f1ocnv 6874 . . . . . . . . 9 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+(exp ↾ ℝ):ℝ+1-1-onto→ℝ)
26 f1of 6862 . . . . . . . . 9 ((exp ↾ ℝ):ℝ+1-1-onto→ℝ → (exp ↾ ℝ):ℝ+⟶ℝ)
2724, 25, 26mp2b 10 . . . . . . . 8 (exp ↾ ℝ):ℝ+⟶ℝ
2827ffvelcdmi 7117 . . . . . . 7 ((abs‘𝑥) ∈ ℝ+ → ((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℝ)
2923, 28syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℝ)
3029recnd 11318 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℂ)
31 ax-icn 11243 . . . . . 6 i ∈ ℂ
32 eff1olem.3 . . . . . . . . 9 (𝜑𝐷 ⊆ ℝ)
3332adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷 ⊆ ℝ)
34 eff1olem.1 . . . . . . . . . . . 12 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
35 eqid 2740 . . . . . . . . . . . 12 (abs “ {1}) = (abs “ {1})
36 eff1olem.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (abs‘(𝑥𝑦)) < (2 · π))
37 eff1olem.5 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
38 eqid 2740 . . . . . . . . . . . 12 (sin ↾ (-(π / 2)[,](π / 2))) = (sin ↾ (-(π / 2)[,](π / 2)))
3934, 35, 32, 36, 37, 38efif1olem4 26605 . . . . . . . . . . 11 (𝜑𝐹:𝐷1-1-onto→(abs “ {1}))
40 f1ocnv 6874 . . . . . . . . . . 11 (𝐹:𝐷1-1-onto→(abs “ {1}) → 𝐹:(abs “ {1})–1-1-onto𝐷)
41 f1of 6862 . . . . . . . . . . 11 (𝐹:(abs “ {1})–1-1-onto𝐷𝐹:(abs “ {1})⟶𝐷)
4239, 40, 413syl 18 . . . . . . . . . 10 (𝜑𝐹:(abs “ {1})⟶𝐷)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐹:(abs “ {1})⟶𝐷)
4421abscld 15485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
4544recnd 11318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
4621, 22absne0d 15496 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ≠ 0)
4721, 45, 46divcld 12070 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑥 / (abs‘𝑥)) ∈ ℂ)
4821, 45, 46absdivd 15504 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘(𝑥 / (abs‘𝑥))) = ((abs‘𝑥) / (abs‘(abs‘𝑥))))
49 absidm 15372 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (abs‘(abs‘𝑥)) = (abs‘𝑥))
5021, 49syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘(abs‘𝑥)) = (abs‘𝑥))
5150oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((abs‘𝑥) / (abs‘(abs‘𝑥))) = ((abs‘𝑥) / (abs‘𝑥)))
5245, 46dividd 12068 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((abs‘𝑥) / (abs‘𝑥)) = 1)
5348, 51, 523eqtrd 2784 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘(𝑥 / (abs‘𝑥))) = 1)
54 absf 15386 . . . . . . . . . . 11 abs:ℂ⟶ℝ
55 ffn 6747 . . . . . . . . . . 11 (abs:ℂ⟶ℝ → abs Fn ℂ)
56 fniniseg 7093 . . . . . . . . . . 11 (abs Fn ℂ → ((𝑥 / (abs‘𝑥)) ∈ (abs “ {1}) ↔ ((𝑥 / (abs‘𝑥)) ∈ ℂ ∧ (abs‘(𝑥 / (abs‘𝑥))) = 1)))
5754, 55, 56mp2b 10 . . . . . . . . . 10 ((𝑥 / (abs‘𝑥)) ∈ (abs “ {1}) ↔ ((𝑥 / (abs‘𝑥)) ∈ ℂ ∧ (abs‘(𝑥 / (abs‘𝑥))) = 1))
5847, 53, 57sylanbrc 582 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑥 / (abs‘𝑥)) ∈ (abs “ {1}))
5943, 58ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝑥 / (abs‘𝑥))) ∈ 𝐷)
6033, 59sseldd 4009 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℝ)
6160recnd 11318 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℂ)
62 mulcl 11268 . . . . . 6 ((i ∈ ℂ ∧ (𝐹‘(𝑥 / (abs‘𝑥))) ∈ ℂ) → (i · (𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ)
6331, 61, 62sylancr 586 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (i · (𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ)
6430, 63addcld 11309 . . . 4 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ)
6529, 60crimd 15281 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = (𝐹‘(𝑥 / (abs‘𝑥))))
6665, 59eqeltrd 2844 . . . 4 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷)
67 ffn 6747 . . . . 5 (ℑ:ℂ⟶ℝ → ℑ Fn ℂ)
68 elpreima 7091 . . . . 5 (ℑ Fn ℂ → ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (ℑ “ 𝐷) ↔ ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ ∧ (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷)))
693, 67, 68mp2b 10 . . . 4 ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (ℑ “ 𝐷) ↔ ((((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ ℂ ∧ (ℑ‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) ∈ 𝐷))
7064, 66, 69sylanbrc 582 . . 3 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ (ℑ “ 𝐷))
7170, 2eleqtrrdi 2855 . 2 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ 𝑆)
72 efadd 16142 . . . . . . 7 ((((exp ↾ ℝ)‘(abs‘𝑥)) ∈ ℂ ∧ (i · (𝐹‘(𝑥 / (abs‘𝑥)))) ∈ ℂ) → (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = ((exp‘((exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
7330, 63, 72syl2anc 583 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = ((exp‘((exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
7429fvresd 6940 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(abs‘𝑥))) = (exp‘((exp ↾ ℝ)‘(abs‘𝑥))))
75 f1ocnvfv2 7313 . . . . . . . . 9 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ (abs‘𝑥) ∈ ℝ+) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥))
7624, 23, 75sylancr 586 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥))
7774, 76eqtr3d 2782 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (exp‘((exp ↾ ℝ)‘(abs‘𝑥))) = (abs‘𝑥))
78 oveq2 7456 . . . . . . . . . . 11 (𝑧 = (𝐹‘(𝑥 / (abs‘𝑥))) → (i · 𝑧) = (i · (𝐹‘(𝑥 / (abs‘𝑥)))))
7978fveq2d 6924 . . . . . . . . . 10 (𝑧 = (𝐹‘(𝑥 / (abs‘𝑥))) → (exp‘(i · 𝑧)) = (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))))
80 oveq2 7456 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (i · 𝑤) = (i · 𝑧))
8180fveq2d 6924 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (exp‘(i · 𝑤)) = (exp‘(i · 𝑧)))
8281cbvmptv 5279 . . . . . . . . . . 11 (𝑤𝐷 ↦ (exp‘(i · 𝑤))) = (𝑧𝐷 ↦ (exp‘(i · 𝑧)))
8334, 82eqtri 2768 . . . . . . . . . 10 𝐹 = (𝑧𝐷 ↦ (exp‘(i · 𝑧)))
84 fvex 6933 . . . . . . . . . 10 (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))) ∈ V
8579, 83, 84fvmpt 7029 . . . . . . . . 9 ((𝐹‘(𝑥 / (abs‘𝑥))) ∈ 𝐷 → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))))
8659, 85syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))))
8739adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐹:𝐷1-1-onto→(abs “ {1}))
88 f1ocnvfv2 7313 . . . . . . . . 9 ((𝐹:𝐷1-1-onto→(abs “ {1}) ∧ (𝑥 / (abs‘𝑥)) ∈ (abs “ {1})) → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (𝑥 / (abs‘𝑥)))
8987, 58, 88syl2anc 583 . . . . . . . 8 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝐹‘(𝐹‘(𝑥 / (abs‘𝑥)))) = (𝑥 / (abs‘𝑥)))
9086, 89eqtr3d 2782 . . . . . . 7 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥))))) = (𝑥 / (abs‘𝑥)))
9177, 90oveq12d 7466 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((exp‘((exp ↾ ℝ)‘(abs‘𝑥))) · (exp‘(i · (𝐹‘(𝑥 / (abs‘𝑥)))))) = ((abs‘𝑥) · (𝑥 / (abs‘𝑥))))
9221, 45, 46divcan2d 12072 . . . . . 6 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((abs‘𝑥) · (𝑥 / (abs‘𝑥))) = 𝑥)
9373, 91, 923eqtrrd 2785 . . . . 5 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
9493adantrl 715 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → 𝑥 = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
95 fveq2 6920 . . . . 5 (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) → (exp‘𝑦) = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
9695eqeq2d 2751 . . . 4 (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) → (𝑥 = (exp‘𝑦) ↔ 𝑥 = (exp‘(((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))))))
9794, 96syl5ibrcom 247 . . 3 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) → 𝑥 = (exp‘𝑦)))
9814adantl 481 . . . . . . 7 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
9998replimd 15246 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
100 absef 16245 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (abs‘(exp‘𝑦)) = (exp‘(ℜ‘𝑦)))
10198, 100syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (abs‘(exp‘𝑦)) = (exp‘(ℜ‘𝑦)))
10298recld 15243 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (ℜ‘𝑦) ∈ ℝ)
103102fvresd 6940 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘(ℜ‘𝑦)) = (exp‘(ℜ‘𝑦)))
104101, 103eqtr4d 2783 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘(exp‘𝑦)) = ((exp ↾ ℝ)‘(ℜ‘𝑦)))
105104fveq2d 6924 . . . . . . . 8 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) = ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))))
106 f1ocnvfv1 7312 . . . . . . . . 9 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ ∧ (ℜ‘𝑦) ∈ ℝ) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))) = (ℜ‘𝑦))
10724, 102, 106sylancr 586 . . . . . . . 8 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘(ℜ‘𝑦))) = (ℜ‘𝑦))
108105, 107eqtrd 2780 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) = (ℜ‘𝑦))
10998imcld 15244 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑆) → (ℑ‘𝑦) ∈ ℝ)
110109recnd 11318 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑆) → (ℑ‘𝑦) ∈ ℂ)
111 mulcl 11268 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝑦) ∈ ℂ) → (i · (ℑ‘𝑦)) ∈ ℂ)
11231, 110, 111sylancr 586 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (i · (ℑ‘𝑦)) ∈ ℂ)
113 efcl 16130 . . . . . . . . . . . . 13 ((i · (ℑ‘𝑦)) ∈ ℂ → (exp‘(i · (ℑ‘𝑦))) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘(i · (ℑ‘𝑦))) ∈ ℂ)
115102recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (ℜ‘𝑦) ∈ ℂ)
116 efcl 16130 . . . . . . . . . . . . 13 ((ℜ‘𝑦) ∈ ℂ → (exp‘(ℜ‘𝑦)) ∈ ℂ)
117115, 116syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘(ℜ‘𝑦)) ∈ ℂ)
118 efne0 16145 . . . . . . . . . . . . 13 ((ℜ‘𝑦) ∈ ℂ → (exp‘(ℜ‘𝑦)) ≠ 0)
119115, 118syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘(ℜ‘𝑦)) ≠ 0)
120114, 117, 119divcan3d 12075 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))) / (exp‘(ℜ‘𝑦))) = (exp‘(i · (ℑ‘𝑦))))
12199fveq2d 6924 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (exp‘𝑦) = (exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))))
122 efadd 16142 . . . . . . . . . . . . . 14 (((ℜ‘𝑦) ∈ ℂ ∧ (i · (ℑ‘𝑦)) ∈ ℂ) → (exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) = ((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))))
123115, 112, 122syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑦𝑆) → (exp‘((ℜ‘𝑦) + (i · (ℑ‘𝑦)))) = ((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))))
124121, 123eqtrd 2780 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (exp‘𝑦) = ((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))))
125124, 101oveq12d 7466 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((exp‘𝑦) / (abs‘(exp‘𝑦))) = (((exp‘(ℜ‘𝑦)) · (exp‘(i · (ℑ‘𝑦)))) / (exp‘(ℜ‘𝑦))))
126 elpreima 7091 . . . . . . . . . . . . . . . 16 (ℑ Fn ℂ → (𝑦 ∈ (ℑ “ 𝐷) ↔ (𝑦 ∈ ℂ ∧ (ℑ‘𝑦) ∈ 𝐷)))
1273, 67, 126mp2b 10 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℑ “ 𝐷) ↔ (𝑦 ∈ ℂ ∧ (ℑ‘𝑦) ∈ 𝐷))
128127simprbi 496 . . . . . . . . . . . . . 14 (𝑦 ∈ (ℑ “ 𝐷) → (ℑ‘𝑦) ∈ 𝐷)
129128, 2eleq2s 2862 . . . . . . . . . . . . 13 (𝑦𝑆 → (ℑ‘𝑦) ∈ 𝐷)
130129adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (ℑ‘𝑦) ∈ 𝐷)
131 oveq2 7456 . . . . . . . . . . . . . 14 (𝑤 = (ℑ‘𝑦) → (i · 𝑤) = (i · (ℑ‘𝑦)))
132131fveq2d 6924 . . . . . . . . . . . . 13 (𝑤 = (ℑ‘𝑦) → (exp‘(i · 𝑤)) = (exp‘(i · (ℑ‘𝑦))))
133 fvex 6933 . . . . . . . . . . . . 13 (exp‘(i · (ℑ‘𝑦))) ∈ V
134132, 34, 133fvmpt 7029 . . . . . . . . . . . 12 ((ℑ‘𝑦) ∈ 𝐷 → (𝐹‘(ℑ‘𝑦)) = (exp‘(i · (ℑ‘𝑦))))
135130, 134syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → (𝐹‘(ℑ‘𝑦)) = (exp‘(i · (ℑ‘𝑦))))
136120, 125, 1353eqtr4d 2790 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((exp‘𝑦) / (abs‘(exp‘𝑦))) = (𝐹‘(ℑ‘𝑦)))
137136fveq2d 6924 . . . . . . . . 9 ((𝜑𝑦𝑆) → (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))) = (𝐹‘(𝐹‘(ℑ‘𝑦))))
138 f1ocnvfv1 7312 . . . . . . . . . 10 ((𝐹:𝐷1-1-onto→(abs “ {1}) ∧ (ℑ‘𝑦) ∈ 𝐷) → (𝐹‘(𝐹‘(ℑ‘𝑦))) = (ℑ‘𝑦))
13939, 129, 138syl2an 595 . . . . . . . . 9 ((𝜑𝑦𝑆) → (𝐹‘(𝐹‘(ℑ‘𝑦))) = (ℑ‘𝑦))
140137, 139eqtrd 2780 . . . . . . . 8 ((𝜑𝑦𝑆) → (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))) = (ℑ‘𝑦))
141140oveq2d 7464 . . . . . . 7 ((𝜑𝑦𝑆) → (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))) = (i · (ℑ‘𝑦)))
142108, 141oveq12d 7466 . . . . . 6 ((𝜑𝑦𝑆) → (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))) = ((ℜ‘𝑦) + (i · (ℑ‘𝑦))))
14399, 142eqtr4d 2783 . . . . 5 ((𝜑𝑦𝑆) → 𝑦 = (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))))
144 fveq2 6920 . . . . . . . 8 (𝑥 = (exp‘𝑦) → (abs‘𝑥) = (abs‘(exp‘𝑦)))
145144fveq2d 6924 . . . . . . 7 (𝑥 = (exp‘𝑦) → ((exp ↾ ℝ)‘(abs‘𝑥)) = ((exp ↾ ℝ)‘(abs‘(exp‘𝑦))))
146 id 22 . . . . . . . . . 10 (𝑥 = (exp‘𝑦) → 𝑥 = (exp‘𝑦))
147146, 144oveq12d 7466 . . . . . . . . 9 (𝑥 = (exp‘𝑦) → (𝑥 / (abs‘𝑥)) = ((exp‘𝑦) / (abs‘(exp‘𝑦))))
148147fveq2d 6924 . . . . . . . 8 (𝑥 = (exp‘𝑦) → (𝐹‘(𝑥 / (abs‘𝑥))) = (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))
149148oveq2d 7464 . . . . . . 7 (𝑥 = (exp‘𝑦) → (i · (𝐹‘(𝑥 / (abs‘𝑥)))) = (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))))
150145, 149oveq12d 7466 . . . . . 6 (𝑥 = (exp‘𝑦) → (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) = (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦)))))))
151150eqeq2d 2751 . . . . 5 (𝑥 = (exp‘𝑦) → (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ↔ 𝑦 = (((exp ↾ ℝ)‘(abs‘(exp‘𝑦))) + (i · (𝐹‘((exp‘𝑦) / (abs‘(exp‘𝑦))))))))
152143, 151syl5ibrcom 247 . . . 4 ((𝜑𝑦𝑆) → (𝑥 = (exp‘𝑦) → 𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
153152adantrr 716 . . 3 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → (𝑥 = (exp‘𝑦) → 𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥)))))))
15497, 153impbid 212 . 2 ((𝜑 ∧ (𝑦𝑆𝑥 ∈ (ℂ ∖ {0}))) → (𝑦 = (((exp ↾ ℝ)‘(abs‘𝑥)) + (i · (𝐹‘(𝑥 / (abs‘𝑥))))) ↔ 𝑥 = (exp‘𝑦)))
15513, 17, 71, 154f1o2d 7704 1 (𝜑 → (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  cres 5702  cima 5703   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  cz 12639  +crp 13057  [,]cicc 13410  cre 15146  cim 15147  abscabs 15283  expce 16109  sincsin 16111  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  eff1o  26609
  Copyright terms: Public domain W3C validator