MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem1 Structured version   Visualization version   GIF version

Theorem odlem1 18267
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odlem1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odlem1
StepHypRef Expression
1 odval.1 . . 3 𝑋 = (Base‘𝐺)
2 odval.2 . . 3 · = (.g𝐺)
3 odval.3 . . 3 0 = (0g𝐺)
4 odval.4 . . 3 𝑂 = (od‘𝐺)
5 odval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
61, 2, 3, 4, 5odval 18266 . 2 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2810 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = 0 ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 333 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
9 eqeq2 2810 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 333 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
11 orc 894 . . . . 5 (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
1211expcom 403 . . . 4 (𝐼 = ∅ → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
1312adantl 474 . . 3 ((𝐴𝑋𝐼 = ∅) → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
14 ssrab2 3883 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
15 nnuz 11967 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2808 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 3840 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 df-ne 2972 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ¬ 𝐼 = ∅)
1918biimpri 220 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
2019adantl 474 . . . . . 6 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
21 infssuzcl 12017 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2217, 20, 21sylancr 582 . . . . 5 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
23 eleq1a 2873 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
2422, 23syl 17 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
25 olc 895 . . . 4 ((𝑂𝐴) ∈ 𝐼 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
2624, 25syl6 35 . . 3 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
278, 10, 13, 26ifbothda 4314 . 2 (𝐴𝑋 → ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
286, 27mpd 15 1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  wo 874   = wceq 1653  wcel 2157  wne 2971  {crab 3093  wss 3769  c0 4115  ifcif 4277  cfv 6101  (class class class)co 6878  infcinf 8589  cr 10223  0cc0 10224  1c1 10225   < clt 10363  cn 11312  cuz 11930  Basecbs 16184  0gc0g 16415  .gcmg 17856  odcod 18257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-od 18261
This theorem is referenced by:  odcl  18268  odid  18270
  Copyright terms: Public domain W3C validator