MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem1 Structured version   Visualization version   GIF version

Theorem odlem1 19520
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odlem1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odlem1
StepHypRef Expression
1 odval.1 . . 3 𝑋 = (Base‘𝐺)
2 odval.2 . . 3 · = (.g𝐺)
3 odval.3 . . 3 0 = (0g𝐺)
4 odval.4 . . 3 𝑂 = (od‘𝐺)
5 odval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
61, 2, 3, 4, 5odval 19519 . 2 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2746 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = 0 ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 341 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
9 eqeq2 2746 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 341 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
11 orc 867 . . . . 5 (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
1211expcom 413 . . . 4 (𝐼 = ∅ → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
1312adantl 481 . . 3 ((𝐴𝑋𝐼 = ∅) → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
14 ssrab2 4060 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
15 nnuz 12902 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2743 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 4015 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 neqne 2939 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
1918adantl 481 . . . . . 6 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
20 infssuzcl 12955 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2117, 19, 20sylancr 587 . . . . 5 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
22 eleq1a 2828 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
2321, 22syl 17 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
24 olc 868 . . . 4 ((𝑂𝐴) ∈ 𝐼 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
2523, 24syl6 35 . . 3 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
268, 10, 13, 25ifbothda 4544 . 2 (𝐴𝑋 → ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
276, 26mpd 15 1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  {crab 3419  wss 3931  c0 4313  ifcif 4505  cfv 6540  (class class class)co 7412  infcinf 9462  cr 11135  0cc0 11136  1c1 11137   < clt 11276  cn 12247  cuz 12859  Basecbs 17228  0gc0g 17454  .gcmg 19053  odcod 19509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-n0 12509  df-z 12596  df-uz 12860  df-od 19513
This theorem is referenced by:  odcl  19521  odid  19523
  Copyright terms: Public domain W3C validator