![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odlem1 | Structured version Visualization version GIF version |
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
odval.2 | ⊢ · = (.g‘𝐺) |
odval.3 | ⊢ 0 = (0g‘𝐺) |
odval.4 | ⊢ 𝑂 = (od‘𝐺) |
odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
Ref | Expression |
---|---|
odlem1 | ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
5 | odval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
6 | 1, 2, 3, 4, 5 | odval 19480 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
7 | eqeq2 2739 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = 0 ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
9 | eqeq2 2739 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
11 | orc 866 | . . . . 5 ⊢ (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐼 = ∅) → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
14 | ssrab2 4073 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ | |
15 | nnuz 12887 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
16 | 15 | eqcomi 2736 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
17 | 14, 5, 16 | 3sstr4i 4021 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
18 | neqne 2943 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
20 | infssuzcl 12938 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
21 | 17, 19, 20 | sylancr 586 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
22 | eleq1a 2823 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) | |
23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) |
24 | olc 867 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ 𝐼 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
26 | 8, 10, 13, 25 | ifbothda 4562 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
27 | 6, 26 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {crab 3427 ⊆ wss 3944 ∅c0 4318 ifcif 4524 ‘cfv 6542 (class class class)co 7414 infcinf 9456 ℝcr 11129 0cc0 11130 1c1 11131 < clt 11270 ℕcn 12234 ℤ≥cuz 12844 Basecbs 17171 0gc0g 17412 .gcmg 19014 odcod 19470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-od 19474 |
This theorem is referenced by: odcl 19482 odid 19484 |
Copyright terms: Public domain | W3C validator |