| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odlem1 | Structured version Visualization version GIF version | ||
| Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odval.2 | ⊢ · = (.g‘𝐺) |
| odval.3 | ⊢ 0 = (0g‘𝐺) |
| odval.4 | ⊢ 𝑂 = (od‘𝐺) |
| odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
| Ref | Expression |
|---|---|
| odlem1 | ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
| 5 | odval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
| 6 | 1, 2, 3, 4, 5 | odval 19446 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 7 | eqeq2 2743 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = 0 ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
| 9 | eqeq2 2743 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
| 11 | orc 867 | . . . . 5 ⊢ (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐼 = ∅) → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 14 | ssrab2 4027 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ | |
| 15 | nnuz 12775 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 15 | eqcomi 2740 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
| 17 | 14, 5, 16 | 3sstr4i 3981 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
| 18 | neqne 2936 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
| 19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
| 20 | infssuzcl 12830 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
| 21 | 17, 19, 20 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
| 22 | eleq1a 2826 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) |
| 24 | olc 868 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ 𝐼 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
| 25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 26 | 8, 10, 13, 25 | ifbothda 4511 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 27 | 6, 26 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3897 ∅c0 4280 ifcif 4472 ‘cfv 6481 (class class class)co 7346 infcinf 9325 ℝcr 11005 0cc0 11006 1c1 11007 < clt 11146 ℕcn 12125 ℤ≥cuz 12732 Basecbs 17120 0gc0g 17343 .gcmg 18980 odcod 19436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-od 19440 |
| This theorem is referenced by: odcl 19448 odid 19450 |
| Copyright terms: Public domain | W3C validator |