![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odlem1 | Structured version Visualization version GIF version |
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
odval.2 | ⊢ · = (.g‘𝐺) |
odval.3 | ⊢ 0 = (0g‘𝐺) |
odval.4 | ⊢ 𝑂 = (od‘𝐺) |
odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
Ref | Expression |
---|---|
odlem1 | ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
5 | odval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
6 | 1, 2, 3, 4, 5 | odval 18266 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
7 | eqeq2 2810 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = 0 ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
8 | 7 | imbi1d 333 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
9 | eqeq2 2810 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
10 | 9 | imbi1d 333 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
11 | orc 894 | . . . . 5 ⊢ (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
12 | 11 | expcom 403 | . . . 4 ⊢ (𝐼 = ∅ → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
13 | 12 | adantl 474 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐼 = ∅) → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
14 | ssrab2 3883 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ | |
15 | nnuz 11967 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
16 | 15 | eqcomi 2808 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
17 | 14, 5, 16 | 3sstr4i 3840 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
18 | df-ne 2972 | . . . . . . . 8 ⊢ (𝐼 ≠ ∅ ↔ ¬ 𝐼 = ∅) | |
19 | 18 | biimpri 220 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) |
20 | 19 | adantl 474 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
21 | infssuzcl 12017 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
22 | 17, 20, 21 | sylancr 582 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
23 | eleq1a 2873 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) |
25 | olc 895 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ 𝐼 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
26 | 24, 25 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
27 | 8, 10, 13, 26 | ifbothda 4314 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
28 | 6, 27 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 {crab 3093 ⊆ wss 3769 ∅c0 4115 ifcif 4277 ‘cfv 6101 (class class class)co 6878 infcinf 8589 ℝcr 10223 0cc0 10224 1c1 10225 < clt 10363 ℕcn 11312 ℤ≥cuz 11930 Basecbs 16184 0gc0g 16415 .gcmg 17856 odcod 18257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-od 18261 |
This theorem is referenced by: odcl 18268 odid 18270 |
Copyright terms: Public domain | W3C validator |