| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odlem1 | Structured version Visualization version GIF version | ||
| Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odval.2 | ⊢ · = (.g‘𝐺) |
| odval.3 | ⊢ 0 = (0g‘𝐺) |
| odval.4 | ⊢ 𝑂 = (od‘𝐺) |
| odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
| Ref | Expression |
|---|---|
| odlem1 | ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
| 5 | odval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
| 6 | 1, 2, 3, 4, 5 | odval 19440 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 7 | eqeq2 2741 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = 0 ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
| 9 | eqeq2 2741 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
| 11 | orc 867 | . . . . 5 ⊢ (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐼 = ∅) → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 14 | ssrab2 4039 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ | |
| 15 | nnuz 12812 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 15 | eqcomi 2738 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
| 17 | 14, 5, 16 | 3sstr4i 3995 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
| 18 | neqne 2933 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
| 19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
| 20 | infssuzcl 12867 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
| 21 | 17, 19, 20 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
| 22 | eleq1a 2823 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) |
| 24 | olc 868 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ 𝐼 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
| 25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 26 | 8, 10, 13, 25 | ifbothda 4523 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
| 27 | 6, 26 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 ⊆ wss 3911 ∅c0 4292 ifcif 4484 ‘cfv 6499 (class class class)co 7369 infcinf 9368 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 ℕcn 12162 ℤ≥cuz 12769 Basecbs 17155 0gc0g 17378 .gcmg 18975 odcod 19430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-od 19434 |
| This theorem is referenced by: odcl 19442 odid 19444 |
| Copyright terms: Public domain | W3C validator |