![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odlem1 | Structured version Visualization version GIF version |
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.) |
Ref | Expression |
---|---|
odval.1 | ⊢ 𝑋 = (Base‘𝐺) |
odval.2 | ⊢ · = (.g‘𝐺) |
odval.3 | ⊢ 0 = (0g‘𝐺) |
odval.4 | ⊢ 𝑂 = (od‘𝐺) |
odval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } |
Ref | Expression |
---|---|
odlem1 | ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | odval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | odval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | odval.4 | . . 3 ⊢ 𝑂 = (od‘𝐺) | |
5 | odval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } | |
6 | 1, 2, 3, 4, 5 | odval 19576 | . 2 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
7 | eqeq2 2749 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = 0 ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
9 | eqeq2 2749 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) ↔ ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)))) |
11 | orc 868 | . . . . 5 ⊢ (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐼 = ∅) → ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
14 | ssrab2 4093 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ | |
15 | nnuz 12928 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
16 | 15 | eqcomi 2746 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
17 | 14, 5, 16 | 3sstr4i 4042 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
18 | neqne 2948 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
20 | infssuzcl 12981 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
21 | 17, 19, 20 | sylancr 587 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
22 | eleq1a 2836 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) | |
23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (𝑂‘𝐴) ∈ 𝐼)) |
24 | olc 869 | . . . 4 ⊢ ((𝑂‘𝐴) ∈ 𝐼 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) | |
25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂‘𝐴) = inf(𝐼, ℝ, < ) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
26 | 8, 10, 13, 25 | ifbothda 4572 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼))) |
27 | 6, 26 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑋 → (((𝑂‘𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂‘𝐴) ∈ 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ⊆ wss 3966 ∅c0 4342 ifcif 4534 ‘cfv 6569 (class class class)co 7438 infcinf 9488 ℝcr 11161 0cc0 11162 1c1 11163 < clt 11302 ℕcn 12273 ℤ≥cuz 12885 Basecbs 17254 0gc0g 17495 .gcmg 19107 odcod 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-od 19570 |
This theorem is referenced by: odcl 19578 odid 19580 |
Copyright terms: Public domain | W3C validator |