MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odlem1 Structured version   Visualization version   GIF version

Theorem odlem1 18657
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) (Revised by AV, 5-Oct-2020.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
odval.i 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
Assertion
Ref Expression
odlem1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦, ·   𝑦, 0
Allowed substitution hints:   𝐼(𝑦)   𝑂(𝑦)   𝑋(𝑦)

Proof of Theorem odlem1
StepHypRef Expression
1 odval.1 . . 3 𝑋 = (Base‘𝐺)
2 odval.2 . . 3 · = (.g𝐺)
3 odval.3 . . 3 0 = (0g𝐺)
4 odval.4 . . 3 𝑂 = (od‘𝐺)
5 odval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 }
61, 2, 3, 4, 5odval 18656 . 2 (𝐴𝑋 → (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2833 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = 0 ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 344 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
9 eqeq2 2833 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) ↔ (𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 344 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)) ↔ ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))))
11 orc 863 . . . . 5 (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
1211expcom 416 . . . 4 (𝐼 = ∅ → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
1312adantl 484 . . 3 ((𝐴𝑋𝐼 = ∅) → ((𝑂𝐴) = 0 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
14 ssrab2 4055 . . . . . . 7 {𝑦 ∈ ℕ ∣ (𝑦 · 𝐴) = 0 } ⊆ ℕ
15 nnuz 12275 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2830 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 4009 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 neqne 3024 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
1918adantl 484 . . . . . 6 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
20 infssuzcl 12326 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2117, 19, 20sylancr 589 . . . . 5 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
22 eleq1a 2908 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
2321, 22syl 17 . . . 4 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (𝑂𝐴) ∈ 𝐼))
24 olc 864 . . . 4 ((𝑂𝐴) ∈ 𝐼 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
2523, 24syl6 35 . . 3 ((𝐴𝑋 ∧ ¬ 𝐼 = ∅) → ((𝑂𝐴) = inf(𝐼, ℝ, < ) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
268, 10, 13, 25ifbothda 4503 . 2 (𝐴𝑋 → ((𝑂𝐴) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼)))
276, 26mpd 15 1 (𝐴𝑋 → (((𝑂𝐴) = 0 ∧ 𝐼 = ∅) ∨ (𝑂𝐴) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  {crab 3142  wss 3935  c0 4290  ifcif 4466  cfv 6349  (class class class)co 7150  infcinf 8899  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cn 11632  cuz 12237  Basecbs 16477  0gc0g 16707  .gcmg 18218  odcod 18646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-od 18650
This theorem is referenced by:  odcl  18658  odid  18660
  Copyright terms: Public domain W3C validator