MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem1 Structured version   Visualization version   GIF version

Theorem gexlem1 18704
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexval.1 𝑋 = (Base‘𝐺)
gexval.2 · = (.g𝐺)
gexval.3 0 = (0g𝐺)
gexval.4 𝐸 = (gEx‘𝐺)
gexval.i 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
Assertion
Ref Expression
gexlem1 (𝐺𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥, · ,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem gexlem1
StepHypRef Expression
1 gexval.1 . . 3 𝑋 = (Base‘𝐺)
2 gexval.2 . . 3 · = (.g𝐺)
3 gexval.3 . . 3 0 = (0g𝐺)
4 gexval.4 . . 3 𝐸 = (gEx‘𝐺)
5 gexval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
61, 2, 3, 4, 5gexval 18703 . 2 (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2833 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 344 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))))
9 eqeq2 2833 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 344 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))))
11 orc 863 . . . . 5 ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
1211expcom 416 . . . 4 (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
1312adantl 484 . . 3 ((𝐺𝑉𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
14 ssrab2 4056 . . . . . . 7 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ
15 nnuz 12282 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2830 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 4010 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 neqne 3024 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
1918adantl 484 . . . . . 6 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
20 infssuzcl 12333 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2117, 19, 20sylancr 589 . . . . 5 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
22 eleq1a 2908 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸𝐼))
2321, 22syl 17 . . . 4 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸𝐼))
24 olc 864 . . . 4 (𝐸𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
2523, 24syl6 35 . . 3 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
268, 10, 13, 25ifbothda 4504 . 2 (𝐺𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
276, 26mpd 15 1 (𝐺𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  wss 3936  c0 4291  ifcif 4467  cfv 6355  (class class class)co 7156  infcinf 8905  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cn 11638  cuz 12244  Basecbs 16483  0gc0g 16713  .gcmg 18224  gExcgex 18653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-gex 18657
This theorem is referenced by:  gexcl  18705  gexid  18706  gexdvds  18709
  Copyright terms: Public domain W3C validator