| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexlem1 | Structured version Visualization version GIF version | ||
| Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| gexval.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexval.2 | ⊢ · = (.g‘𝐺) |
| gexval.3 | ⊢ 0 = (0g‘𝐺) |
| gexval.4 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
| Ref | Expression |
|---|---|
| gexlem1 | ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | gexval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | gexval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | gexval.4 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
| 5 | gexval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
| 6 | 1, 2, 3, 4, 5 | gexval 19514 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 7 | eqeq2 2742 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
| 9 | eqeq2 2742 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
| 11 | orc 867 | . . . . 5 ⊢ ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 14 | ssrab2 4051 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ | |
| 15 | nnuz 12852 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 15 | eqcomi 2739 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
| 17 | 14, 5, 16 | 3sstr4i 4006 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
| 18 | neqne 2935 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
| 19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
| 20 | infssuzcl 12905 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
| 21 | 17, 19, 20 | sylancr 587 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
| 22 | eleq1a 2824 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) |
| 24 | olc 868 | . . . 4 ⊢ (𝐸 ∈ 𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
| 25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 26 | 8, 10, 13, 25 | ifbothda 4535 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 27 | 6, 26 | mpd 15 | 1 ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 {crab 3411 ⊆ wss 3922 ∅c0 4304 ifcif 4496 ‘cfv 6519 (class class class)co 7394 infcinf 9410 ℝcr 11085 0cc0 11086 1c1 11087 < clt 11226 ℕcn 12197 ℤ≥cuz 12809 Basecbs 17185 0gc0g 17408 .gcmg 19005 gExcgex 19461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-gex 19465 |
| This theorem is referenced by: gexcl 19516 gexid 19517 gexdvds 19520 |
| Copyright terms: Public domain | W3C validator |