Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gexlem1 | Structured version Visualization version GIF version |
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
gexval.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexval.2 | ⊢ · = (.g‘𝐺) |
gexval.3 | ⊢ 0 = (0g‘𝐺) |
gexval.4 | ⊢ 𝐸 = (gEx‘𝐺) |
gexval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
Ref | Expression |
---|---|
gexlem1 | ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | gexval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | gexval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | gexval.4 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
5 | gexval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
6 | 1, 2, 3, 4, 5 | gexval 19098 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
7 | eqeq2 2750 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
9 | eqeq2 2750 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
11 | orc 863 | . . . . 5 ⊢ ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
14 | ssrab2 4009 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ | |
15 | nnuz 12550 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
16 | 15 | eqcomi 2747 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
17 | 14, 5, 16 | 3sstr4i 3960 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
18 | neqne 2950 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
20 | infssuzcl 12601 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
21 | 17, 19, 20 | sylancr 586 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
22 | eleq1a 2834 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) | |
23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) |
24 | olc 864 | . . . 4 ⊢ (𝐸 ∈ 𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
26 | 8, 10, 13, 25 | ifbothda 4494 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
27 | 6, 26 | mpd 15 | 1 ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ⊆ wss 3883 ∅c0 4253 ifcif 4456 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ℕcn 11903 ℤ≥cuz 12511 Basecbs 16840 0gc0g 17067 .gcmg 18615 gExcgex 19048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-gex 19052 |
This theorem is referenced by: gexcl 19100 gexid 19101 gexdvds 19104 |
Copyright terms: Public domain | W3C validator |