| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexlem1 | Structured version Visualization version GIF version | ||
| Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| gexval.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexval.2 | ⊢ · = (.g‘𝐺) |
| gexval.3 | ⊢ 0 = (0g‘𝐺) |
| gexval.4 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
| Ref | Expression |
|---|---|
| gexlem1 | ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | gexval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | gexval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | gexval.4 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
| 5 | gexval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
| 6 | 1, 2, 3, 4, 5 | gexval 19475 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
| 7 | eqeq2 2741 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 8 | 7 | imbi1d 341 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
| 9 | eqeq2 2741 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
| 10 | 9 | imbi1d 341 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
| 11 | orc 867 | . . . . 5 ⊢ ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
| 12 | 11 | expcom 413 | . . . 4 ⊢ (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 14 | ssrab2 4033 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ | |
| 15 | nnuz 12796 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 15 | eqcomi 2738 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
| 17 | 14, 5, 16 | 3sstr4i 3989 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
| 18 | neqne 2933 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
| 19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
| 20 | infssuzcl 12851 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
| 21 | 17, 19, 20 | sylancr 587 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
| 22 | eleq1a 2823 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) |
| 24 | olc 868 | . . . 4 ⊢ (𝐸 ∈ 𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
| 25 | 23, 24 | syl6 35 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 26 | 8, 10, 13, 25 | ifbothda 4517 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
| 27 | 6, 26 | mpd 15 | 1 ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3396 ⊆ wss 3905 ∅c0 4286 ifcif 4478 ‘cfv 6486 (class class class)co 7353 infcinf 9350 ℝcr 11027 0cc0 11028 1c1 11029 < clt 11168 ℕcn 12146 ℤ≥cuz 12753 Basecbs 17138 0gc0g 17361 .gcmg 18964 gExcgex 19422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-gex 19426 |
| This theorem is referenced by: gexcl 19477 gexid 19478 gexdvds 19481 |
| Copyright terms: Public domain | W3C validator |