MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem1 Structured version   Visualization version   GIF version

Theorem gexlem1 19099
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexval.1 𝑋 = (Base‘𝐺)
gexval.2 · = (.g𝐺)
gexval.3 0 = (0g𝐺)
gexval.4 𝐸 = (gEx‘𝐺)
gexval.i 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
Assertion
Ref Expression
gexlem1 (𝐺𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥, · ,𝑦   𝑥,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem gexlem1
StepHypRef Expression
1 gexval.1 . . 3 𝑋 = (Base‘𝐺)
2 gexval.2 . . 3 · = (.g𝐺)
3 gexval.3 . . 3 0 = (0g𝐺)
4 gexval.4 . . 3 𝐸 = (gEx‘𝐺)
5 gexval.i . . 3 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
61, 2, 3, 4, 5gexval 19098 . 2 (𝐺𝑉𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))
7 eqeq2 2750 . . . 4 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
87imbi1d 341 . . 3 (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))))
9 eqeq2 2750 . . . 4 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))))
109imbi1d 341 . . 3 (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))))
11 orc 863 . . . . 5 ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
1211expcom 413 . . . 4 (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
1312adantl 481 . . 3 ((𝐺𝑉𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
14 ssrab2 4009 . . . . . . 7 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ
15 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
1615eqcomi 2747 . . . . . . 7 (ℤ‘1) = ℕ
1714, 5, 163sstr4i 3960 . . . . . 6 𝐼 ⊆ (ℤ‘1)
18 neqne 2950 . . . . . . 7 𝐼 = ∅ → 𝐼 ≠ ∅)
1918adantl 481 . . . . . 6 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
20 infssuzcl 12601 . . . . . 6 ((𝐼 ⊆ (ℤ‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
2117, 19, 20sylancr 586 . . . . 5 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼)
22 eleq1a 2834 . . . . 5 (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸𝐼))
2321, 22syl 17 . . . 4 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸𝐼))
24 olc 864 . . . 4 (𝐸𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
2523, 24syl6 35 . . 3 ((𝐺𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
268, 10, 13, 25ifbothda 4494 . 2 (𝐺𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼)))
276, 26mpd 15 1 (𝐺𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  wss 3883  c0 4253  ifcif 4456  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cn 11903  cuz 12511  Basecbs 16840  0gc0g 17067  .gcmg 18615  gExcgex 19048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-gex 19052
This theorem is referenced by:  gexcl  19100  gexid  19101  gexdvds  19104
  Copyright terms: Public domain W3C validator