Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version |
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12001 | . . 3 ⊢ 9 ∈ ℕ | |
2 | 8nn 11998 | . . 3 ⊢ 8 ∈ ℕ | |
3 | 4nn0 12182 | . . 3 ⊢ 4 ∈ ℕ0 | |
4 | 0z 12260 | . . 3 ⊢ 0 ∈ ℤ | |
5 | 1nn0 12179 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12180 | . . . 4 ⊢ 2 ∈ ℕ0 | |
7 | 7nn 11995 | . . . . . 6 ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi 12274 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 8nn0 12186 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
10 | 8cn 12000 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
11 | exp1 13716 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
13 | 12 | oveq1i 7265 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
14 | 2t1e2 12066 | . . . . 5 ⊢ (2 · 1) = 2 | |
15 | 6nn0 12184 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 12181 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 12048 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
18 | eqid 2738 | . . . . . . 7 ⊢ ;63 = ;63 | |
19 | 15, 16, 17, 18 | decsuc 12397 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
20 | 9cn 12003 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
21 | 7cn 11997 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
22 | 9t7e63 12493 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
23 | 20, 21, 22 | mulcomli 10915 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
24 | 23 | oveq1i 7265 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
25 | 8t8e64 12487 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
26 | 19, 24, 25 | 3eqtr4i 2776 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 16698 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
28 | 2t2e4 12067 | . . . 4 ⊢ (2 · 2) = 4 | |
29 | 0p1e1 12025 | . . . . 5 ⊢ (0 + 1) = 1 | |
30 | 20 | mul02i 11094 | . . . . . 6 ⊢ (0 · 9) = 0 |
31 | 30 | oveq1i 7265 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
32 | 1t1e1 12065 | . . . . 5 ⊢ (1 · 1) = 1 | |
33 | 29, 31, 32 | 3eqtr4i 2776 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 16698 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
35 | 4cn 11988 | . . . 4 ⊢ 4 ∈ ℂ | |
36 | 2cn 11978 | . . . 4 ⊢ 2 ∈ ℂ | |
37 | 4t2e8 12071 | . . . 4 ⊢ (4 · 2) = 8 | |
38 | 35, 36, 37 | mulcomli 10915 | . . 3 ⊢ (2 · 4) = 8 |
39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 16698 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
40 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
41 | nnrp 12670 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
43 | 0le1 11428 | . . 3 ⊢ 0 ≤ 1 | |
44 | 1lt9 12109 | . . 3 ⊢ 1 < 9 | |
45 | modid 13544 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
46 | 40, 42, 43, 44, 45 | mp4an 689 | . 2 ⊢ (1 mod 9) = 1 |
47 | 39, 46 | eqtri 2766 | 1 ⊢ ((8↑8) mod 9) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 ℕcn 11903 2c2 11958 3c3 11959 4c4 11960 6c6 11962 7c7 11963 8c8 11964 9c9 11965 ;cdc 12366 ℝ+crp 12659 mod cmo 13517 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 |
This theorem is referenced by: 9fppr8 45077 nfermltl8rev 45082 |
Copyright terms: Public domain | W3C validator |