![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version |
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12309 | . . 3 ⊢ 9 ∈ ℕ | |
2 | 8nn 12306 | . . 3 ⊢ 8 ∈ ℕ | |
3 | 4nn0 12490 | . . 3 ⊢ 4 ∈ ℕ0 | |
4 | 0z 12568 | . . 3 ⊢ 0 ∈ ℤ | |
5 | 1nn0 12487 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12488 | . . . 4 ⊢ 2 ∈ ℕ0 | |
7 | 7nn 12303 | . . . . . 6 ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi 12585 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 8nn0 12494 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
10 | 8cn 12308 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
11 | exp1 14032 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
13 | 12 | oveq1i 7418 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
14 | 2t1e2 12374 | . . . . 5 ⊢ (2 · 1) = 2 | |
15 | 6nn0 12492 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 12489 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 12356 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
18 | eqid 2732 | . . . . . . 7 ⊢ ;63 = ;63 | |
19 | 15, 16, 17, 18 | decsuc 12707 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
20 | 9cn 12311 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
21 | 7cn 12305 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
22 | 9t7e63 12803 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
23 | 20, 21, 22 | mulcomli 11222 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
24 | 23 | oveq1i 7418 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
25 | 8t8e64 12797 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
26 | 19, 24, 25 | 3eqtr4i 2770 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17001 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
28 | 2t2e4 12375 | . . . 4 ⊢ (2 · 2) = 4 | |
29 | 0p1e1 12333 | . . . . 5 ⊢ (0 + 1) = 1 | |
30 | 20 | mul02i 11402 | . . . . . 6 ⊢ (0 · 9) = 0 |
31 | 30 | oveq1i 7418 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
32 | 1t1e1 12373 | . . . . 5 ⊢ (1 · 1) = 1 | |
33 | 29, 31, 32 | 3eqtr4i 2770 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17001 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
35 | 4cn 12296 | . . . 4 ⊢ 4 ∈ ℂ | |
36 | 2cn 12286 | . . . 4 ⊢ 2 ∈ ℂ | |
37 | 4t2e8 12379 | . . . 4 ⊢ (4 · 2) = 8 | |
38 | 35, 36, 37 | mulcomli 11222 | . . 3 ⊢ (2 · 4) = 8 |
39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17001 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
40 | 1re 11213 | . . 3 ⊢ 1 ∈ ℝ | |
41 | nnrp 12984 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
43 | 0le1 11736 | . . 3 ⊢ 0 ≤ 1 | |
44 | 1lt9 12417 | . . 3 ⊢ 1 < 9 | |
45 | modid 13860 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
46 | 40, 42, 43, 44, 45 | mp4an 691 | . 2 ⊢ (1 mod 9) = 1 |
47 | 39, 46 | eqtri 2760 | 1 ⊢ ((8↑8) mod 9) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7408 ℂcc 11107 ℝcr 11108 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 < clt 11247 ≤ cle 11248 ℕcn 12211 2c2 12266 3c3 12267 4c4 12268 6c6 12270 7c7 12271 8c8 12272 9c9 12273 ;cdc 12676 ℝ+crp 12973 mod cmo 13833 ↑cexp 14026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 |
This theorem is referenced by: 9fppr8 46395 nfermltl8rev 46400 |
Copyright terms: Public domain | W3C validator |