![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version |
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12362 | . . 3 ⊢ 9 ∈ ℕ | |
2 | 8nn 12359 | . . 3 ⊢ 8 ∈ ℕ | |
3 | 4nn0 12543 | . . 3 ⊢ 4 ∈ ℕ0 | |
4 | 0z 12622 | . . 3 ⊢ 0 ∈ ℤ | |
5 | 1nn0 12540 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12541 | . . . 4 ⊢ 2 ∈ ℕ0 | |
7 | 7nn 12356 | . . . . . 6 ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi 12639 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 8nn0 12547 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
10 | 8cn 12361 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
11 | exp1 14105 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
13 | 12 | oveq1i 7441 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
14 | 2t1e2 12427 | . . . . 5 ⊢ (2 · 1) = 2 | |
15 | 6nn0 12545 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 12542 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 12409 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
18 | eqid 2735 | . . . . . . 7 ⊢ ;63 = ;63 | |
19 | 15, 16, 17, 18 | decsuc 12762 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
20 | 9cn 12364 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
21 | 7cn 12358 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
22 | 9t7e63 12858 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
23 | 20, 21, 22 | mulcomli 11268 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
24 | 23 | oveq1i 7441 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
25 | 8t8e64 12852 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
26 | 19, 24, 25 | 3eqtr4i 2773 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17103 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
28 | 2t2e4 12428 | . . . 4 ⊢ (2 · 2) = 4 | |
29 | 0p1e1 12386 | . . . . 5 ⊢ (0 + 1) = 1 | |
30 | 20 | mul02i 11448 | . . . . . 6 ⊢ (0 · 9) = 0 |
31 | 30 | oveq1i 7441 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
32 | 1t1e1 12426 | . . . . 5 ⊢ (1 · 1) = 1 | |
33 | 29, 31, 32 | 3eqtr4i 2773 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17103 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
35 | 4cn 12349 | . . . 4 ⊢ 4 ∈ ℂ | |
36 | 2cn 12339 | . . . 4 ⊢ 2 ∈ ℂ | |
37 | 4t2e8 12432 | . . . 4 ⊢ (4 · 2) = 8 | |
38 | 35, 36, 37 | mulcomli 11268 | . . 3 ⊢ (2 · 4) = 8 |
39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17103 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
40 | 1re 11259 | . . 3 ⊢ 1 ∈ ℝ | |
41 | nnrp 13044 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
43 | 0le1 11784 | . . 3 ⊢ 0 ≤ 1 | |
44 | 1lt9 12470 | . . 3 ⊢ 1 < 9 | |
45 | modid 13933 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
46 | 40, 42, 43, 44, 45 | mp4an 693 | . 2 ⊢ (1 mod 9) = 1 |
47 | 39, 46 | eqtri 2763 | 1 ⊢ ((8↑8) mod 9) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 < clt 11293 ≤ cle 11294 ℕcn 12264 2c2 12319 3c3 12320 4c4 12321 6c6 12323 7c7 12324 8c8 12325 9c9 12326 ;cdc 12731 ℝ+crp 13032 mod cmo 13906 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 |
This theorem is referenced by: 9fppr8 47662 nfermltl8rev 47667 |
Copyright terms: Public domain | W3C validator |