| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version | ||
| Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12245 | . . 3 ⊢ 9 ∈ ℕ | |
| 2 | 8nn 12242 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | 4nn0 12422 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 4 | 0z 12501 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | 1nn0 12419 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12420 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 7 | 7nn 12239 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 8 | 7 | nnzi 12518 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 8nn0 12426 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 10 | 8cn 12244 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
| 11 | exp1 13993 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
| 13 | 12 | oveq1i 7363 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
| 14 | 2t1e2 12305 | . . . . 5 ⊢ (2 · 1) = 2 | |
| 15 | 6nn0 12424 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 16 | 3nn0 12421 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 17 | 3p1e4 12287 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ ;63 = ;63 | |
| 19 | 15, 16, 17, 18 | decsuc 12641 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
| 20 | 9cn 12247 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 21 | 7cn 12241 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
| 22 | 9t7e63 12737 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
| 23 | 20, 21, 22 | mulcomli 11143 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
| 24 | 23 | oveq1i 7363 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
| 25 | 8t8e64 12731 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
| 26 | 19, 24, 25 | 3eqtr4i 2762 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
| 27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17000 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
| 28 | 2t2e4 12306 | . . . 4 ⊢ (2 · 2) = 4 | |
| 29 | 0p1e1 12264 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 30 | 20 | mul02i 11324 | . . . . . 6 ⊢ (0 · 9) = 0 |
| 31 | 30 | oveq1i 7363 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
| 32 | 1t1e1 12304 | . . . . 5 ⊢ (1 · 1) = 1 | |
| 33 | 29, 31, 32 | 3eqtr4i 2762 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
| 34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17000 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
| 35 | 4cn 12232 | . . . 4 ⊢ 4 ∈ ℂ | |
| 36 | 2cn 12222 | . . . 4 ⊢ 2 ∈ ℂ | |
| 37 | 4t2e8 12310 | . . . 4 ⊢ (4 · 2) = 8 | |
| 38 | 35, 36, 37 | mulcomli 11143 | . . 3 ⊢ (2 · 4) = 8 |
| 39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17000 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 40 | 1re 11134 | . . 3 ⊢ 1 ∈ ℝ | |
| 41 | nnrp 12924 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
| 43 | 0le1 11662 | . . 3 ⊢ 0 ≤ 1 | |
| 44 | 1lt9 12348 | . . 3 ⊢ 1 < 9 | |
| 45 | modid 13819 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 46 | 40, 42, 43, 44, 45 | mp4an 693 | . 2 ⊢ (1 mod 9) = 1 |
| 47 | 39, 46 | eqtri 2752 | 1 ⊢ ((8↑8) mod 9) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 ℕcn 12147 2c2 12202 3c3 12203 4c4 12204 6c6 12206 7c7 12207 8c8 12208 9c9 12209 ;cdc 12610 ℝ+crp 12912 mod cmo 13792 ↑cexp 13987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 |
| This theorem is referenced by: 9fppr8 47741 nfermltl8rev 47746 |
| Copyright terms: Public domain | W3C validator |