| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version | ||
| Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12338 | . . 3 ⊢ 9 ∈ ℕ | |
| 2 | 8nn 12335 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | 4nn0 12520 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 4 | 0z 12599 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | 1nn0 12517 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12518 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 7 | 7nn 12332 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 8 | 7 | nnzi 12616 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 8nn0 12524 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 10 | 8cn 12337 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
| 11 | exp1 14085 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
| 13 | 12 | oveq1i 7415 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
| 14 | 2t1e2 12403 | . . . . 5 ⊢ (2 · 1) = 2 | |
| 15 | 6nn0 12522 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 16 | 3nn0 12519 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 17 | 3p1e4 12385 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 18 | eqid 2735 | . . . . . . 7 ⊢ ;63 = ;63 | |
| 19 | 15, 16, 17, 18 | decsuc 12739 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
| 20 | 9cn 12340 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 21 | 7cn 12334 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
| 22 | 9t7e63 12835 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
| 23 | 20, 21, 22 | mulcomli 11244 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
| 24 | 23 | oveq1i 7415 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
| 25 | 8t8e64 12829 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
| 26 | 19, 24, 25 | 3eqtr4i 2768 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
| 27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17089 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
| 28 | 2t2e4 12404 | . . . 4 ⊢ (2 · 2) = 4 | |
| 29 | 0p1e1 12362 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 30 | 20 | mul02i 11424 | . . . . . 6 ⊢ (0 · 9) = 0 |
| 31 | 30 | oveq1i 7415 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
| 32 | 1t1e1 12402 | . . . . 5 ⊢ (1 · 1) = 1 | |
| 33 | 29, 31, 32 | 3eqtr4i 2768 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
| 34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17089 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
| 35 | 4cn 12325 | . . . 4 ⊢ 4 ∈ ℂ | |
| 36 | 2cn 12315 | . . . 4 ⊢ 2 ∈ ℂ | |
| 37 | 4t2e8 12408 | . . . 4 ⊢ (4 · 2) = 8 | |
| 38 | 35, 36, 37 | mulcomli 11244 | . . 3 ⊢ (2 · 4) = 8 |
| 39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17089 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 40 | 1re 11235 | . . 3 ⊢ 1 ∈ ℝ | |
| 41 | nnrp 13020 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
| 43 | 0le1 11760 | . . 3 ⊢ 0 ≤ 1 | |
| 44 | 1lt9 12446 | . . 3 ⊢ 1 < 9 | |
| 45 | modid 13913 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 46 | 40, 42, 43, 44, 45 | mp4an 693 | . 2 ⊢ (1 mod 9) = 1 |
| 47 | 39, 46 | eqtri 2758 | 1 ⊢ ((8↑8) mod 9) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 ℕcn 12240 2c2 12295 3c3 12296 4c4 12297 6c6 12299 7c7 12300 8c8 12301 9c9 12302 ;cdc 12708 ℝ+crp 13008 mod cmo 13886 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: 9fppr8 47751 nfermltl8rev 47756 |
| Copyright terms: Public domain | W3C validator |