| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version | ||
| Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12284 | . . 3 ⊢ 9 ∈ ℕ | |
| 2 | 8nn 12281 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | 4nn0 12461 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 4 | 0z 12540 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | 1nn0 12458 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12459 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 7 | 7nn 12278 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 8 | 7 | nnzi 12557 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 8nn0 12465 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 10 | 8cn 12283 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
| 11 | exp1 14032 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
| 13 | 12 | oveq1i 7397 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
| 14 | 2t1e2 12344 | . . . . 5 ⊢ (2 · 1) = 2 | |
| 15 | 6nn0 12463 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 16 | 3nn0 12460 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 17 | 3p1e4 12326 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ ;63 = ;63 | |
| 19 | 15, 16, 17, 18 | decsuc 12680 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
| 20 | 9cn 12286 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 21 | 7cn 12280 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
| 22 | 9t7e63 12776 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
| 23 | 20, 21, 22 | mulcomli 11183 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
| 24 | 23 | oveq1i 7397 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
| 25 | 8t8e64 12770 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
| 26 | 19, 24, 25 | 3eqtr4i 2762 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
| 27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17040 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
| 28 | 2t2e4 12345 | . . . 4 ⊢ (2 · 2) = 4 | |
| 29 | 0p1e1 12303 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 30 | 20 | mul02i 11363 | . . . . . 6 ⊢ (0 · 9) = 0 |
| 31 | 30 | oveq1i 7397 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
| 32 | 1t1e1 12343 | . . . . 5 ⊢ (1 · 1) = 1 | |
| 33 | 29, 31, 32 | 3eqtr4i 2762 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
| 34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17040 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
| 35 | 4cn 12271 | . . . 4 ⊢ 4 ∈ ℂ | |
| 36 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 37 | 4t2e8 12349 | . . . 4 ⊢ (4 · 2) = 8 | |
| 38 | 35, 36, 37 | mulcomli 11183 | . . 3 ⊢ (2 · 4) = 8 |
| 39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17040 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 40 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 41 | nnrp 12963 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
| 43 | 0le1 11701 | . . 3 ⊢ 0 ≤ 1 | |
| 44 | 1lt9 12387 | . . 3 ⊢ 1 < 9 | |
| 45 | modid 13858 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 46 | 40, 42, 43, 44, 45 | mp4an 693 | . 2 ⊢ (1 mod 9) = 1 |
| 47 | 39, 46 | eqtri 2752 | 1 ⊢ ((8↑8) mod 9) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 ≤ cle 11209 ℕcn 12186 2c2 12241 3c3 12242 4c4 12243 6c6 12245 7c7 12246 8c8 12247 9c9 12248 ;cdc 12649 ℝ+crp 12951 mod cmo 13831 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: 9fppr8 47738 nfermltl8rev 47743 |
| Copyright terms: Public domain | W3C validator |