| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version | ||
| Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12234 | . . 3 ⊢ 9 ∈ ℕ | |
| 2 | 8nn 12231 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | 4nn0 12411 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 4 | 0z 12490 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | 1nn0 12408 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12409 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 7 | 7nn 12228 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 8 | 7 | nnzi 12506 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 8nn0 12415 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 10 | 8cn 12233 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
| 11 | exp1 13981 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
| 13 | 12 | oveq1i 7365 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
| 14 | 2t1e2 12294 | . . . . 5 ⊢ (2 · 1) = 2 | |
| 15 | 6nn0 12413 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 16 | 3nn0 12410 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 17 | 3p1e4 12276 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 18 | eqid 2733 | . . . . . . 7 ⊢ ;63 = ;63 | |
| 19 | 15, 16, 17, 18 | decsuc 12629 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
| 20 | 9cn 12236 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 21 | 7cn 12230 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
| 22 | 9t7e63 12725 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
| 23 | 20, 21, 22 | mulcomli 11132 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
| 24 | 23 | oveq1i 7365 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
| 25 | 8t8e64 12719 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
| 26 | 19, 24, 25 | 3eqtr4i 2766 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
| 27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 16988 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
| 28 | 2t2e4 12295 | . . . 4 ⊢ (2 · 2) = 4 | |
| 29 | 0p1e1 12253 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 30 | 20 | mul02i 11313 | . . . . . 6 ⊢ (0 · 9) = 0 |
| 31 | 30 | oveq1i 7365 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
| 32 | 1t1e1 12293 | . . . . 5 ⊢ (1 · 1) = 1 | |
| 33 | 29, 31, 32 | 3eqtr4i 2766 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
| 34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 16988 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
| 35 | 4cn 12221 | . . . 4 ⊢ 4 ∈ ℂ | |
| 36 | 2cn 12211 | . . . 4 ⊢ 2 ∈ ℂ | |
| 37 | 4t2e8 12299 | . . . 4 ⊢ (4 · 2) = 8 | |
| 38 | 35, 36, 37 | mulcomli 11132 | . . 3 ⊢ (2 · 4) = 8 |
| 39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 16988 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 40 | 1re 11123 | . . 3 ⊢ 1 ∈ ℝ | |
| 41 | nnrp 12908 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
| 43 | 0le1 11651 | . . 3 ⊢ 0 ≤ 1 | |
| 44 | 1lt9 12337 | . . 3 ⊢ 1 < 9 | |
| 45 | modid 13807 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 46 | 40, 42, 43, 44, 45 | mp4an 693 | . 2 ⊢ (1 mod 9) = 1 |
| 47 | 39, 46 | eqtri 2756 | 1 ⊢ ((8↑8) mod 9) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 ℕcn 12136 2c2 12191 3c3 12192 4c4 12193 6c6 12195 7c7 12196 8c8 12197 9c9 12198 ;cdc 12598 ℝ+crp 12896 mod cmo 13780 ↑cexp 13975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 |
| This theorem is referenced by: 9fppr8 47899 nfermltl8rev 47904 |
| Copyright terms: Public domain | W3C validator |