Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version |
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12071 | . . 3 ⊢ 9 ∈ ℕ | |
2 | 8nn 12068 | . . 3 ⊢ 8 ∈ ℕ | |
3 | 4nn0 12252 | . . 3 ⊢ 4 ∈ ℕ0 | |
4 | 0z 12330 | . . 3 ⊢ 0 ∈ ℤ | |
5 | 1nn0 12249 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12250 | . . . 4 ⊢ 2 ∈ ℕ0 | |
7 | 7nn 12065 | . . . . . 6 ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi 12344 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 8nn0 12256 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
10 | 8cn 12070 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
11 | exp1 13788 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
13 | 12 | oveq1i 7285 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
14 | 2t1e2 12136 | . . . . 5 ⊢ (2 · 1) = 2 | |
15 | 6nn0 12254 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 12251 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 12118 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
18 | eqid 2738 | . . . . . . 7 ⊢ ;63 = ;63 | |
19 | 15, 16, 17, 18 | decsuc 12468 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
20 | 9cn 12073 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
21 | 7cn 12067 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
22 | 9t7e63 12564 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
23 | 20, 21, 22 | mulcomli 10984 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
24 | 23 | oveq1i 7285 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
25 | 8t8e64 12558 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
26 | 19, 24, 25 | 3eqtr4i 2776 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 16770 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
28 | 2t2e4 12137 | . . . 4 ⊢ (2 · 2) = 4 | |
29 | 0p1e1 12095 | . . . . 5 ⊢ (0 + 1) = 1 | |
30 | 20 | mul02i 11164 | . . . . . 6 ⊢ (0 · 9) = 0 |
31 | 30 | oveq1i 7285 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
32 | 1t1e1 12135 | . . . . 5 ⊢ (1 · 1) = 1 | |
33 | 29, 31, 32 | 3eqtr4i 2776 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 16770 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
35 | 4cn 12058 | . . . 4 ⊢ 4 ∈ ℂ | |
36 | 2cn 12048 | . . . 4 ⊢ 2 ∈ ℂ | |
37 | 4t2e8 12141 | . . . 4 ⊢ (4 · 2) = 8 | |
38 | 35, 36, 37 | mulcomli 10984 | . . 3 ⊢ (2 · 4) = 8 |
39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 16770 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
40 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
41 | nnrp 12741 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
43 | 0le1 11498 | . . 3 ⊢ 0 ≤ 1 | |
44 | 1lt9 12179 | . . 3 ⊢ 1 < 9 | |
45 | modid 13616 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
46 | 40, 42, 43, 44, 45 | mp4an 690 | . 2 ⊢ (1 mod 9) = 1 |
47 | 39, 46 | eqtri 2766 | 1 ⊢ ((8↑8) mod 9) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 ℕcn 11973 2c2 12028 3c3 12029 4c4 12030 6c6 12032 7c7 12033 8c8 12034 9c9 12035 ;cdc 12437 ℝ+crp 12730 mod cmo 13589 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 |
This theorem is referenced by: 9fppr8 45189 nfermltl8rev 45194 |
Copyright terms: Public domain | W3C validator |