![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version |
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12314 | . . 3 ⊢ 9 ∈ ℕ | |
2 | 8nn 12311 | . . 3 ⊢ 8 ∈ ℕ | |
3 | 4nn0 12495 | . . 3 ⊢ 4 ∈ ℕ0 | |
4 | 0z 12573 | . . 3 ⊢ 0 ∈ ℤ | |
5 | 1nn0 12492 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12493 | . . . 4 ⊢ 2 ∈ ℕ0 | |
7 | 7nn 12308 | . . . . . 6 ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi 12590 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 8nn0 12499 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
10 | 8cn 12313 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
11 | exp1 14038 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
13 | 12 | oveq1i 7415 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
14 | 2t1e2 12379 | . . . . 5 ⊢ (2 · 1) = 2 | |
15 | 6nn0 12497 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 12494 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 12361 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
18 | eqid 2726 | . . . . . . 7 ⊢ ;63 = ;63 | |
19 | 15, 16, 17, 18 | decsuc 12712 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
20 | 9cn 12316 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
21 | 7cn 12310 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
22 | 9t7e63 12808 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
23 | 20, 21, 22 | mulcomli 11227 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
24 | 23 | oveq1i 7415 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
25 | 8t8e64 12802 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
26 | 19, 24, 25 | 3eqtr4i 2764 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17011 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
28 | 2t2e4 12380 | . . . 4 ⊢ (2 · 2) = 4 | |
29 | 0p1e1 12338 | . . . . 5 ⊢ (0 + 1) = 1 | |
30 | 20 | mul02i 11407 | . . . . . 6 ⊢ (0 · 9) = 0 |
31 | 30 | oveq1i 7415 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
32 | 1t1e1 12378 | . . . . 5 ⊢ (1 · 1) = 1 | |
33 | 29, 31, 32 | 3eqtr4i 2764 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17011 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
35 | 4cn 12301 | . . . 4 ⊢ 4 ∈ ℂ | |
36 | 2cn 12291 | . . . 4 ⊢ 2 ∈ ℂ | |
37 | 4t2e8 12384 | . . . 4 ⊢ (4 · 2) = 8 | |
38 | 35, 36, 37 | mulcomli 11227 | . . 3 ⊢ (2 · 4) = 8 |
39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17011 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
40 | 1re 11218 | . . 3 ⊢ 1 ∈ ℝ | |
41 | nnrp 12991 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
43 | 0le1 11741 | . . 3 ⊢ 0 ≤ 1 | |
44 | 1lt9 12422 | . . 3 ⊢ 1 < 9 | |
45 | modid 13867 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
46 | 40, 42, 43, 44, 45 | mp4an 690 | . 2 ⊢ (1 mod 9) = 1 |
47 | 39, 46 | eqtri 2754 | 1 ⊢ ((8↑8) mod 9) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 class class class wbr 5141 (class class class)co 7405 ℂcc 11110 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 < clt 11252 ≤ cle 11253 ℕcn 12216 2c2 12271 3c3 12272 4c4 12273 6c6 12275 7c7 12276 8c8 12277 9c9 12278 ;cdc 12681 ℝ+crp 12980 mod cmo 13840 ↑cexp 14032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 |
This theorem is referenced by: 9fppr8 46977 nfermltl8rev 46982 |
Copyright terms: Public domain | W3C validator |