![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version |
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
Ref | Expression |
---|---|
8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12391 | . . 3 ⊢ 9 ∈ ℕ | |
2 | 8nn 12388 | . . 3 ⊢ 8 ∈ ℕ | |
3 | 4nn0 12572 | . . 3 ⊢ 4 ∈ ℕ0 | |
4 | 0z 12650 | . . 3 ⊢ 0 ∈ ℤ | |
5 | 1nn0 12569 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12570 | . . . 4 ⊢ 2 ∈ ℕ0 | |
7 | 7nn 12385 | . . . . . 6 ⊢ 7 ∈ ℕ | |
8 | 7 | nnzi 12667 | . . . . 5 ⊢ 7 ∈ ℤ |
9 | 8nn0 12576 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
10 | 8cn 12390 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
11 | exp1 14118 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
13 | 12 | oveq1i 7458 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
14 | 2t1e2 12456 | . . . . 5 ⊢ (2 · 1) = 2 | |
15 | 6nn0 12574 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
16 | 3nn0 12571 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
17 | 3p1e4 12438 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
18 | eqid 2740 | . . . . . . 7 ⊢ ;63 = ;63 | |
19 | 15, 16, 17, 18 | decsuc 12789 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
20 | 9cn 12393 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
21 | 7cn 12387 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
22 | 9t7e63 12885 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
23 | 20, 21, 22 | mulcomli 11299 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
24 | 23 | oveq1i 7458 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
25 | 8t8e64 12879 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
26 | 19, 24, 25 | 3eqtr4i 2778 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 17116 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
28 | 2t2e4 12457 | . . . 4 ⊢ (2 · 2) = 4 | |
29 | 0p1e1 12415 | . . . . 5 ⊢ (0 + 1) = 1 | |
30 | 20 | mul02i 11479 | . . . . . 6 ⊢ (0 · 9) = 0 |
31 | 30 | oveq1i 7458 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
32 | 1t1e1 12455 | . . . . 5 ⊢ (1 · 1) = 1 | |
33 | 29, 31, 32 | 3eqtr4i 2778 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 17116 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
35 | 4cn 12378 | . . . 4 ⊢ 4 ∈ ℂ | |
36 | 2cn 12368 | . . . 4 ⊢ 2 ∈ ℂ | |
37 | 4t2e8 12461 | . . . 4 ⊢ (4 · 2) = 8 | |
38 | 35, 36, 37 | mulcomli 11299 | . . 3 ⊢ (2 · 4) = 8 |
39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 17116 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
40 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
41 | nnrp 13068 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
43 | 0le1 11813 | . . 3 ⊢ 0 ≤ 1 | |
44 | 1lt9 12499 | . . 3 ⊢ 1 < 9 | |
45 | modid 13947 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
46 | 40, 42, 43, 44, 45 | mp4an 692 | . 2 ⊢ (1 mod 9) = 1 |
47 | 39, 46 | eqtri 2768 | 1 ⊢ ((8↑8) mod 9) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 ℕcn 12293 2c2 12348 3c3 12349 4c4 12350 6c6 12352 7c7 12353 8c8 12354 9c9 12355 ;cdc 12758 ℝ+crp 13057 mod cmo 13920 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 |
This theorem is referenced by: 9fppr8 47611 nfermltl8rev 47616 |
Copyright terms: Public domain | W3C validator |