| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 8exp8mod9 | Structured version Visualization version GIF version | ||
| Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) |
| Ref | Expression |
|---|---|
| 8exp8mod9 | ⊢ ((8↑8) mod 9) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12218 | . . 3 ⊢ 9 ∈ ℕ | |
| 2 | 8nn 12215 | . . 3 ⊢ 8 ∈ ℕ | |
| 3 | 4nn0 12395 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 4 | 0z 12474 | . . 3 ⊢ 0 ∈ ℤ | |
| 5 | 1nn0 12392 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12393 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 7 | 7nn 12212 | . . . . . 6 ⊢ 7 ∈ ℕ | |
| 8 | 7 | nnzi 12491 | . . . . 5 ⊢ 7 ∈ ℤ |
| 9 | 8nn0 12399 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
| 10 | 8cn 12217 | . . . . . . 7 ⊢ 8 ∈ ℂ | |
| 11 | exp1 13969 | . . . . . . 7 ⊢ (8 ∈ ℂ → (8↑1) = 8) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . 6 ⊢ (8↑1) = 8 |
| 13 | 12 | oveq1i 7351 | . . . . 5 ⊢ ((8↑1) mod 9) = (8 mod 9) |
| 14 | 2t1e2 12278 | . . . . 5 ⊢ (2 · 1) = 2 | |
| 15 | 6nn0 12397 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 16 | 3nn0 12394 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 17 | 3p1e4 12260 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 18 | eqid 2731 | . . . . . . 7 ⊢ ;63 = ;63 | |
| 19 | 15, 16, 17, 18 | decsuc 12614 | . . . . . 6 ⊢ (;63 + 1) = ;64 |
| 20 | 9cn 12220 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 21 | 7cn 12214 | . . . . . . . 8 ⊢ 7 ∈ ℂ | |
| 22 | 9t7e63 12710 | . . . . . . . 8 ⊢ (9 · 7) = ;63 | |
| 23 | 20, 21, 22 | mulcomli 11116 | . . . . . . 7 ⊢ (7 · 9) = ;63 |
| 24 | 23 | oveq1i 7351 | . . . . . 6 ⊢ ((7 · 9) + 1) = (;63 + 1) |
| 25 | 8t8e64 12704 | . . . . . 6 ⊢ (8 · 8) = ;64 | |
| 26 | 19, 24, 25 | 3eqtr4i 2764 | . . . . 5 ⊢ ((7 · 9) + 1) = (8 · 8) |
| 27 | 1, 2, 5, 8, 9, 5, 13, 14, 26 | mod2xi 16976 | . . . 4 ⊢ ((8↑2) mod 9) = (1 mod 9) |
| 28 | 2t2e4 12279 | . . . 4 ⊢ (2 · 2) = 4 | |
| 29 | 0p1e1 12237 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 30 | 20 | mul02i 11297 | . . . . . 6 ⊢ (0 · 9) = 0 |
| 31 | 30 | oveq1i 7351 | . . . . 5 ⊢ ((0 · 9) + 1) = (0 + 1) |
| 32 | 1t1e1 12277 | . . . . 5 ⊢ (1 · 1) = 1 | |
| 33 | 29, 31, 32 | 3eqtr4i 2764 | . . . 4 ⊢ ((0 · 9) + 1) = (1 · 1) |
| 34 | 1, 2, 6, 4, 5, 5, 27, 28, 33 | mod2xi 16976 | . . 3 ⊢ ((8↑4) mod 9) = (1 mod 9) |
| 35 | 4cn 12205 | . . . 4 ⊢ 4 ∈ ℂ | |
| 36 | 2cn 12195 | . . . 4 ⊢ 2 ∈ ℂ | |
| 37 | 4t2e8 12283 | . . . 4 ⊢ (4 · 2) = 8 | |
| 38 | 35, 36, 37 | mulcomli 11116 | . . 3 ⊢ (2 · 4) = 8 |
| 39 | 1, 2, 3, 4, 5, 5, 34, 38, 33 | mod2xi 16976 | . 2 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 40 | 1re 11107 | . . 3 ⊢ 1 ∈ ℝ | |
| 41 | nnrp 12897 | . . . 4 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 42 | 1, 41 | ax-mp 5 | . . 3 ⊢ 9 ∈ ℝ+ |
| 43 | 0le1 11635 | . . 3 ⊢ 0 ≤ 1 | |
| 44 | 1lt9 12321 | . . 3 ⊢ 1 < 9 | |
| 45 | modid 13795 | . . 3 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 46 | 40, 42, 43, 44, 45 | mp4an 693 | . 2 ⊢ (1 mod 9) = 1 |
| 47 | 39, 46 | eqtri 2754 | 1 ⊢ ((8↑8) mod 9) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 ≤ cle 11142 ℕcn 12120 2c2 12175 3c3 12176 4c4 12177 6c6 12179 7c7 12180 8c8 12181 9c9 12182 ;cdc 12583 ℝ+crp 12885 mod cmo 13768 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: 9fppr8 47768 nfermltl8rev 47773 |
| Copyright terms: Public domain | W3C validator |