| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60lcm7e420 | Structured version Visualization version GIF version | ||
| Description: The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60lcm7e420 | ⊢ (;60 lcm 7) = ;;420 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12214 | . . 3 ⊢ 6 ∈ ℕ | |
| 2 | 1 | decnncl2 12612 | . 2 ⊢ ;60 ∈ ℕ |
| 3 | 7nn 12217 | . 2 ⊢ 7 ∈ ℕ | |
| 4 | 1nn 12136 | . 2 ⊢ 1 ∈ ℕ | |
| 5 | 4nn0 12400 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 6 | 2nn 12198 | . . . 4 ⊢ 2 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12608 | . . 3 ⊢ ;42 ∈ ℕ |
| 8 | 7 | decnncl2 12612 | . 2 ⊢ ;;420 ∈ ℕ |
| 9 | 60gcd7e1 42108 | . 2 ⊢ (;60 gcd 7) = 1 | |
| 10 | 2nn0 12398 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 11 | 5, 10 | deccl 12603 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
| 12 | 0nn0 12396 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | 11, 12 | deccl 12603 | . . . 4 ⊢ ;;420 ∈ ℕ0 |
| 14 | 13 | nn0cni 12393 | . . 3 ⊢ ;;420 ∈ ℂ |
| 15 | 14 | mullidi 11117 | . 2 ⊢ (1 · ;;420) = ;;420 |
| 16 | 7nn0 12403 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 17 | 6nn0 12402 | . . 3 ⊢ 6 ∈ ℕ0 | |
| 18 | eqid 2731 | . . 3 ⊢ ;60 = ;60 | |
| 19 | 7cn 12219 | . . . . 5 ⊢ 7 ∈ ℂ | |
| 20 | 6cn 12216 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 21 | 7t6e42 12701 | . . . . 5 ⊢ (7 · 6) = ;42 | |
| 22 | 19, 20, 21 | mulcomli 11121 | . . . 4 ⊢ (6 · 7) = ;42 |
| 23 | 2cn 12200 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 24 | 23 | addridi 11300 | . . . 4 ⊢ (2 + 0) = 2 |
| 25 | 5, 10, 12, 22, 24 | decaddi 12648 | . . 3 ⊢ ((6 · 7) + 0) = ;42 |
| 26 | 0cn 11104 | . . . 4 ⊢ 0 ∈ ℂ | |
| 27 | 19 | mul01i 11303 | . . . . 5 ⊢ (7 · 0) = 0 |
| 28 | 12 | dec0h 12610 | . . . . . 6 ⊢ 0 = ;00 |
| 29 | 28 | eqcomi 2740 | . . . . 5 ⊢ ;00 = 0 |
| 30 | 27, 29 | eqtr4i 2757 | . . . 4 ⊢ (7 · 0) = ;00 |
| 31 | 19, 26, 30 | mulcomli 11121 | . . 3 ⊢ (0 · 7) = ;00 |
| 32 | 16, 17, 12, 18, 12, 12, 25, 31 | decmul1c 12653 | . 2 ⊢ (;60 · 7) = ;;420 |
| 33 | 2, 3, 4, 8, 9, 15, 32 | lcmeprodgcdi 42110 | 1 ⊢ (;60 lcm 7) = ;;420 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 1c1 11007 · cmul 11011 2c2 12180 4c4 12182 6c6 12184 7c7 12185 ;cdc 12588 lcm clcm 16499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-lcm 16501 df-prm 16583 |
| This theorem is referenced by: lcm7un 42122 |
| Copyright terms: Public domain | W3C validator |