![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 60lcm7e420 | Structured version Visualization version GIF version |
Description: The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
60lcm7e420 | ⊢ (;60 lcm 7) = ;;420 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12382 | . . 3 ⊢ 6 ∈ ℕ | |
2 | 1 | decnncl2 12782 | . 2 ⊢ ;60 ∈ ℕ |
3 | 7nn 12385 | . 2 ⊢ 7 ∈ ℕ | |
4 | 1nn 12304 | . 2 ⊢ 1 ∈ ℕ | |
5 | 4nn0 12572 | . . . 4 ⊢ 4 ∈ ℕ0 | |
6 | 2nn 12366 | . . . 4 ⊢ 2 ∈ ℕ | |
7 | 5, 6 | decnncl 12778 | . . 3 ⊢ ;42 ∈ ℕ |
8 | 7 | decnncl2 12782 | . 2 ⊢ ;;420 ∈ ℕ |
9 | 60gcd7e1 41962 | . 2 ⊢ (;60 gcd 7) = 1 | |
10 | 2nn0 12570 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
11 | 5, 10 | deccl 12773 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
12 | 0nn0 12568 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | 11, 12 | deccl 12773 | . . . 4 ⊢ ;;420 ∈ ℕ0 |
14 | 13 | nn0cni 12565 | . . 3 ⊢ ;;420 ∈ ℂ |
15 | 14 | mullidi 11295 | . 2 ⊢ (1 · ;;420) = ;;420 |
16 | 7nn0 12575 | . . 3 ⊢ 7 ∈ ℕ0 | |
17 | 6nn0 12574 | . . 3 ⊢ 6 ∈ ℕ0 | |
18 | eqid 2740 | . . 3 ⊢ ;60 = ;60 | |
19 | 7cn 12387 | . . . . 5 ⊢ 7 ∈ ℂ | |
20 | 6cn 12384 | . . . . 5 ⊢ 6 ∈ ℂ | |
21 | 7t6e42 12871 | . . . . 5 ⊢ (7 · 6) = ;42 | |
22 | 19, 20, 21 | mulcomli 11299 | . . . 4 ⊢ (6 · 7) = ;42 |
23 | 2cn 12368 | . . . . 5 ⊢ 2 ∈ ℂ | |
24 | 23 | addridi 11477 | . . . 4 ⊢ (2 + 0) = 2 |
25 | 5, 10, 12, 22, 24 | decaddi 12818 | . . 3 ⊢ ((6 · 7) + 0) = ;42 |
26 | 0cn 11282 | . . . 4 ⊢ 0 ∈ ℂ | |
27 | 19 | mul01i 11480 | . . . . 5 ⊢ (7 · 0) = 0 |
28 | 12 | dec0h 12780 | . . . . . 6 ⊢ 0 = ;00 |
29 | 28 | eqcomi 2749 | . . . . 5 ⊢ ;00 = 0 |
30 | 27, 29 | eqtr4i 2771 | . . . 4 ⊢ (7 · 0) = ;00 |
31 | 19, 26, 30 | mulcomli 11299 | . . 3 ⊢ (0 · 7) = ;00 |
32 | 16, 17, 12, 18, 12, 12, 25, 31 | decmul1c 12823 | . 2 ⊢ (;60 · 7) = ;;420 |
33 | 2, 3, 4, 8, 9, 15, 32 | lcmeprodgcdi 41964 | 1 ⊢ (;60 lcm 7) = ;;420 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 · cmul 11189 2c2 12348 4c4 12350 6c6 12352 7c7 12353 ;cdc 12758 lcm clcm 16635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-lcm 16637 df-prm 16719 |
This theorem is referenced by: lcm7un 41976 |
Copyright terms: Public domain | W3C validator |