| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 60lcm7e420 | Structured version Visualization version GIF version | ||
| Description: The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 60lcm7e420 | ⊢ (;60 lcm 7) = ;;420 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12217 | . . 3 ⊢ 6 ∈ ℕ | |
| 2 | 1 | decnncl2 12615 | . 2 ⊢ ;60 ∈ ℕ |
| 3 | 7nn 12220 | . 2 ⊢ 7 ∈ ℕ | |
| 4 | 1nn 12139 | . 2 ⊢ 1 ∈ ℕ | |
| 5 | 4nn0 12403 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 6 | 2nn 12201 | . . . 4 ⊢ 2 ∈ ℕ | |
| 7 | 5, 6 | decnncl 12611 | . . 3 ⊢ ;42 ∈ ℕ |
| 8 | 7 | decnncl2 12615 | . 2 ⊢ ;;420 ∈ ℕ |
| 9 | 60gcd7e1 41982 | . 2 ⊢ (;60 gcd 7) = 1 | |
| 10 | 2nn0 12401 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 11 | 5, 10 | deccl 12606 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
| 12 | 0nn0 12399 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | 11, 12 | deccl 12606 | . . . 4 ⊢ ;;420 ∈ ℕ0 |
| 14 | 13 | nn0cni 12396 | . . 3 ⊢ ;;420 ∈ ℂ |
| 15 | 14 | mullidi 11120 | . 2 ⊢ (1 · ;;420) = ;;420 |
| 16 | 7nn0 12406 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 17 | 6nn0 12405 | . . 3 ⊢ 6 ∈ ℕ0 | |
| 18 | eqid 2729 | . . 3 ⊢ ;60 = ;60 | |
| 19 | 7cn 12222 | . . . . 5 ⊢ 7 ∈ ℂ | |
| 20 | 6cn 12219 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 21 | 7t6e42 12704 | . . . . 5 ⊢ (7 · 6) = ;42 | |
| 22 | 19, 20, 21 | mulcomli 11124 | . . . 4 ⊢ (6 · 7) = ;42 |
| 23 | 2cn 12203 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 24 | 23 | addridi 11303 | . . . 4 ⊢ (2 + 0) = 2 |
| 25 | 5, 10, 12, 22, 24 | decaddi 12651 | . . 3 ⊢ ((6 · 7) + 0) = ;42 |
| 26 | 0cn 11107 | . . . 4 ⊢ 0 ∈ ℂ | |
| 27 | 19 | mul01i 11306 | . . . . 5 ⊢ (7 · 0) = 0 |
| 28 | 12 | dec0h 12613 | . . . . . 6 ⊢ 0 = ;00 |
| 29 | 28 | eqcomi 2738 | . . . . 5 ⊢ ;00 = 0 |
| 30 | 27, 29 | eqtr4i 2755 | . . . 4 ⊢ (7 · 0) = ;00 |
| 31 | 19, 26, 30 | mulcomli 11124 | . . 3 ⊢ (0 · 7) = ;00 |
| 32 | 16, 17, 12, 18, 12, 12, 25, 31 | decmul1c 12656 | . 2 ⊢ (;60 · 7) = ;;420 |
| 33 | 2, 3, 4, 8, 9, 15, 32 | lcmeprodgcdi 41984 | 1 ⊢ (;60 lcm 7) = ;;420 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 1c1 11010 · cmul 11014 2c2 12183 4c4 12185 6c6 12187 7c7 12188 ;cdc 12591 lcm clcm 16499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-lcm 16501 df-prm 16583 |
| This theorem is referenced by: lcm7un 41996 |
| Copyright terms: Public domain | W3C validator |