MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpncan2 Structured version   Visualization version   GIF version

Theorem ablpncan2 18931
Description: Cancellation law for subtraction. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablpncan2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)

Proof of Theorem ablpncan2
StepHypRef Expression
1 simp1 1131 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
2 simp2 1132 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1133 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
5 ablsubadd.p . . . 4 + = (+g𝐺)
6 ablsubadd.m . . . 4 = (-g𝐺)
74, 5, 6abladdsub 18930 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) 𝑋) = ((𝑋 𝑋) + 𝑌))
81, 2, 3, 2, 7syl13anc 1367 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = ((𝑋 𝑋) + 𝑌))
9 ablgrp 18906 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
101, 9syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
11 eqid 2820 . . . . 5 (0g𝐺) = (0g𝐺)
124, 11, 6grpsubid 18178 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
1310, 2, 12syl2anc 586 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑋) = (0g𝐺))
1413oveq1d 7164 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋) + 𝑌) = ((0g𝐺) + 𝑌))
154, 5, 11grplid 18128 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
1610, 3, 15syl2anc 586 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
178, 14, 163eqtrd 2859 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082   = wceq 1536  wcel 2113  cfv 6348  (class class class)co 7149  Basecbs 16478  +gcplusg 16560  0gc0g 16708  Grpcgrp 18098  -gcsg 18100  Abelcabl 18902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-cmn 18903  df-abl 18904
This theorem is referenced by:  lssvancl1  19711  lspprabs  19862  lsmcv  19908  ngpocelbl  23308  ttgcontlem1  26669
  Copyright terms: Public domain W3C validator