MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpncan2 Structured version   Visualization version   GIF version

Theorem ablpncan2 19848
Description: Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablpncan2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)

Proof of Theorem ablpncan2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
2 simp2 1136 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1137 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
5 ablsubadd.p . . . 4 + = (+g𝐺)
6 ablsubadd.m . . . 4 = (-g𝐺)
74, 5, 6abladdsub 19845 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) 𝑋) = ((𝑋 𝑋) + 𝑌))
81, 2, 3, 2, 7syl13anc 1371 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = ((𝑋 𝑋) + 𝑌))
9 ablgrp 19818 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
101, 9syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
11 eqid 2735 . . . . 5 (0g𝐺) = (0g𝐺)
124, 11, 6grpsubid 19055 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
1310, 2, 12syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑋) = (0g𝐺))
1413oveq1d 7446 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋) + 𝑌) = ((0g𝐺) + 𝑌))
154, 5, 11grplid 18998 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
1610, 3, 15syl2anc 584 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
178, 14, 163eqtrd 2779 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  -gcsg 18966  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816
This theorem is referenced by:  lssvancl1  20961  lspprabs  21112  lsmcv  21161  ngpocelbl  24741  ttgcontlem1  28914
  Copyright terms: Public domain W3C validator