MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablpncan2 Structured version   Visualization version   GIF version

Theorem ablpncan2 19712
Description: Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablpncan2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)

Proof of Theorem ablpncan2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Abel)
2 simp2 1137 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1138 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 ablsubadd.b . . . 4 𝐵 = (Base‘𝐺)
5 ablsubadd.p . . . 4 + = (+g𝐺)
6 ablsubadd.m . . . 4 = (-g𝐺)
74, 5, 6abladdsub 19709 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) 𝑋) = ((𝑋 𝑋) + 𝑌))
81, 2, 3, 2, 7syl13anc 1374 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = ((𝑋 𝑋) + 𝑌))
9 ablgrp 19682 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
101, 9syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
11 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
124, 11, 6grpsubid 18921 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 𝑋) = (0g𝐺))
1310, 2, 12syl2anc 584 . . 3 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑋) = (0g𝐺))
1413oveq1d 7368 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋) + 𝑌) = ((0g𝐺) + 𝑌))
154, 5, 11grplid 18864 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
1610, 3, 15syl2anc 584 . 2 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
178, 14, 163eqtrd 2768 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-cmn 19679  df-abl 19680
This theorem is referenced by:  lssvancl1  20866  lspprabs  21017  lsmcv  21066  ngpocelbl  24608  ttgcontlem1  28848
  Copyright terms: Public domain W3C validator