MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpnpcan Structured version   Visualization version   GIF version

Theorem grpnpcan 18582
Description: Cancellation law for subtraction (npcan 11160 analog). (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpnpcan ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)

Proof of Theorem grpnpcan
StepHypRef Expression
1 grpsubadd.b . . . . . 6 𝐵 = (Base‘𝐺)
2 eqid 2738 . . . . . 6 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 18542 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
433adant2 1129 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
5 grpsubadd.p . . . . 5 + = (+g𝐺)
61, 5grpcl 18500 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
74, 6syld3an3 1407 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵)
8 grpsubadd.m . . . 4 = (-g𝐺)
91, 5, 2, 8grpsubval 18540 . . 3 (((𝑋 + ((invg𝐺)‘𝑌)) ∈ 𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = ((𝑋 + ((invg𝐺)‘𝑌)) + ((invg𝐺)‘((invg𝐺)‘𝑌))))
107, 4, 9syl2anc 583 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = ((𝑋 + ((invg𝐺)‘𝑌)) + ((invg𝐺)‘((invg𝐺)‘𝑌))))
111, 5, 8grppncan 18581 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = 𝑋)
124, 11syld3an3 1407 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) ((invg𝐺)‘𝑌)) = 𝑋)
131, 5, 2, 8grpsubval 18540 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
14133adant1 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + ((invg𝐺)‘𝑌)))
1514eqcomd 2744 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((invg𝐺)‘𝑌)) = (𝑋 𝑌))
161, 2grpinvinv 18557 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
17163adant2 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
1815, 17oveq12d 7273 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + ((invg𝐺)‘𝑌)) + ((invg𝐺)‘((invg𝐺)‘𝑌))) = ((𝑋 𝑌) + 𝑌))
1910, 12, 183eqtr3rd 2787 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) + 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497
This theorem is referenced by:  grpsubsub4  18583  grpnpncan  18585  grpnnncan2  18587  dfgrp3  18589  nsgconj  18702  conjghm  18780  conjnmz  18783  sylow2blem1  19140  ablpncan3  19333  lmodvnpcan  20092  ipsubdir  20759  ipsubdi  20760  coe1subfv  21347  mdetunilem9  21677  subgntr  23166  ghmcnp  23174  tgpt0  23178  r1pid  25229  archiabllem1a  31347  archiabllem2a  31350  ornglmulle  31406  orngrmulle  31407  kercvrlsm  40824  hbtlem5  40869
  Copyright terms: Public domain W3C validator