Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpnpcan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction (npcan 11160 analog). (Contributed by NM, 19-Apr-2014.) |
Ref | Expression |
---|---|
grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubadd.p | ⊢ + = (+g‘𝐺) |
grpsubadd.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpnpcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | grpinvcl 18542 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
4 | 3 | 3adant2 1129 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
5 | grpsubadd.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
6 | 1, 5 | grpcl 18500 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
7 | 4, 6 | syld3an3 1407 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
8 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
9 | 1, 5, 2, 8 | grpsubval 18540 | . . 3 ⊢ (((𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
10 | 7, 4, 9 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
11 | 1, 5, 8 | grppncan 18581 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
12 | 4, 11 | syld3an3 1407 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
13 | 1, 5, 2, 8 | grpsubval 18540 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
14 | 13 | 3adant1 1128 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
15 | 14 | eqcomd 2744 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 − 𝑌)) |
16 | 1, 2 | grpinvinv 18557 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
17 | 16 | 3adant2 1129 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
18 | 15, 17 | oveq12d 7273 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌))) = ((𝑋 − 𝑌) + 𝑌)) |
19 | 10, 12, 18 | 3eqtr3rd 2787 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 invgcminusg 18493 -gcsg 18494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 |
This theorem is referenced by: grpsubsub4 18583 grpnpncan 18585 grpnnncan2 18587 dfgrp3 18589 nsgconj 18702 conjghm 18780 conjnmz 18783 sylow2blem1 19140 ablpncan3 19333 lmodvnpcan 20092 ipsubdir 20759 ipsubdi 20760 coe1subfv 21347 mdetunilem9 21677 subgntr 23166 ghmcnp 23174 tgpt0 23178 r1pid 25229 archiabllem1a 31347 archiabllem2a 31350 ornglmulle 31406 orngrmulle 31407 kercvrlsm 40824 hbtlem5 40869 |
Copyright terms: Public domain | W3C validator |