| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpnpcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction (npcan 11369 analog). (Contributed by NM, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubadd.p | ⊢ + = (+g‘𝐺) |
| grpsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpnpcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 18900 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 5 | grpsubadd.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 6 | 1, 5 | grpcl 18854 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
| 7 | 4, 6 | syld3an3 1411 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
| 8 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 9 | 1, 5, 2, 8 | grpsubval 18898 | . . 3 ⊢ (((𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
| 10 | 7, 4, 9 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
| 11 | 1, 5, 8 | grppncan 18944 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
| 12 | 4, 11 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
| 13 | 1, 5, 2, 8 | grpsubval 18898 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 14 | 13 | 3adant1 1130 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 15 | 14 | eqcomd 2737 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 − 𝑌)) |
| 16 | 1, 2 | grpinvinv 18918 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 17 | 16 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 18 | 15, 17 | oveq12d 7364 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌))) = ((𝑋 − 𝑌) + 𝑌)) |
| 19 | 10, 12, 18 | 3eqtr3rd 2775 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 invgcminusg 18847 -gcsg 18848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 |
| This theorem is referenced by: grpsubsub4 18946 grpnpncan 18948 grpnnncan2 18950 dfgrp3 18952 xpsgrpsub 18974 nsgconj 19072 conjghm 19162 conjnmz 19165 sylow2blem1 19533 ablpncan3 19729 ornglmulle 20783 orngrmulle 20784 lmodvnpcan 20850 ipsubdir 21580 ipsubdi 21581 coe1subfv 22181 mdetunilem9 22536 subgntr 24023 ghmcnp 24031 tgpt0 24035 r1pid 26094 cntrval2 33138 archiabllem1a 33158 archiabllem2a 33161 kercvrlsm 43122 hbtlem5 43167 |
| Copyright terms: Public domain | W3C validator |