| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpnpcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction (npcan 11437 analog). (Contributed by NM, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubadd.p | ⊢ + = (+g‘𝐺) |
| grpsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpnpcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 18926 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘𝑌) ∈ 𝐵) |
| 5 | grpsubadd.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 6 | 1, 5 | grpcl 18880 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
| 7 | 4, 6 | syld3an3 1411 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵) |
| 8 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 9 | 1, 5, 2, 8 | grpsubval 18924 | . . 3 ⊢ (((𝑋 + ((invg‘𝐺)‘𝑌)) ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
| 10 | 7, 4, 9 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)))) |
| 11 | 1, 5, 8 | grppncan 18970 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
| 12 | 4, 11 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) − ((invg‘𝐺)‘𝑌)) = 𝑋) |
| 13 | 1, 5, 2, 8 | grpsubval 18924 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 14 | 13 | 3adant1 1130 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + ((invg‘𝐺)‘𝑌))) |
| 15 | 14 | eqcomd 2736 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((invg‘𝐺)‘𝑌)) = (𝑋 − 𝑌)) |
| 16 | 1, 2 | grpinvinv 18944 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 17 | 16 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝐺)‘((invg‘𝐺)‘𝑌)) = 𝑌) |
| 18 | 15, 17 | oveq12d 7408 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + ((invg‘𝐺)‘𝑌)) + ((invg‘𝐺)‘((invg‘𝐺)‘𝑌))) = ((𝑋 − 𝑌) + 𝑌)) |
| 19 | 10, 12, 18 | 3eqtr3rd 2774 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 − 𝑌) + 𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 invgcminusg 18873 -gcsg 18874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 |
| This theorem is referenced by: grpsubsub4 18972 grpnpncan 18974 grpnnncan2 18976 dfgrp3 18978 xpsgrpsub 19000 nsgconj 19098 conjghm 19188 conjnmz 19191 sylow2blem1 19557 ablpncan3 19753 lmodvnpcan 20829 ipsubdir 21558 ipsubdi 21559 coe1subfv 22159 mdetunilem9 22514 subgntr 24001 ghmcnp 24009 tgpt0 24013 r1pid 26073 cntrval2 33135 archiabllem1a 33152 archiabllem2a 33155 ornglmulle 33290 orngrmulle 33291 kercvrlsm 43079 hbtlem5 43124 |
| Copyright terms: Public domain | W3C validator |