MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   GIF version

Theorem abvres 20439
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a 𝐴 = (AbsValβ€˜π‘…)
abvres.s 𝑆 = (𝑅 β†Ύs 𝐢)
abvres.b 𝐡 = (AbsValβ€˜π‘†)
Assertion
Ref Expression
abvres ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (𝐹 β†Ύ 𝐢) ∈ 𝐡)

Proof of Theorem abvres
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3 𝐡 = (AbsValβ€˜π‘†)
21a1i 11 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ 𝐡 = (AbsValβ€˜π‘†))
3 abvres.s . . . 4 𝑆 = (𝑅 β†Ύs 𝐢)
43subrgbas 20364 . . 3 (𝐢 ∈ (SubRingβ€˜π‘…) β†’ 𝐢 = (Baseβ€˜π‘†))
54adantl 482 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ 𝐢 = (Baseβ€˜π‘†))
6 eqid 2732 . . . 4 (+gβ€˜π‘…) = (+gβ€˜π‘…)
73, 6ressplusg 17231 . . 3 (𝐢 ∈ (SubRingβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜π‘†))
87adantl 482 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (+gβ€˜π‘…) = (+gβ€˜π‘†))
9 eqid 2732 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
103, 9ressmulr 17248 . . 3 (𝐢 ∈ (SubRingβ€˜π‘…) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
1110adantl 482 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
12 subrgsubg 20361 . . . 4 (𝐢 ∈ (SubRingβ€˜π‘…) β†’ 𝐢 ∈ (SubGrpβ€˜π‘…))
1312adantl 482 . . 3 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ 𝐢 ∈ (SubGrpβ€˜π‘…))
14 eqid 2732 . . . 4 (0gβ€˜π‘…) = (0gβ€˜π‘…)
153, 14subg0 19006 . . 3 (𝐢 ∈ (SubGrpβ€˜π‘…) β†’ (0gβ€˜π‘…) = (0gβ€˜π‘†))
1613, 15syl 17 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (0gβ€˜π‘…) = (0gβ€˜π‘†))
173subrgring 20358 . . 3 (𝐢 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 ∈ Ring)
1817adantl 482 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ 𝑆 ∈ Ring)
19 abvres.a . . . 4 𝐴 = (AbsValβ€˜π‘…)
20 eqid 2732 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2119, 20abvf 20423 . . 3 (𝐹 ∈ 𝐴 β†’ 𝐹:(Baseβ€˜π‘…)βŸΆβ„)
2220subrgss 20356 . . 3 (𝐢 ∈ (SubRingβ€˜π‘…) β†’ 𝐢 βŠ† (Baseβ€˜π‘…))
23 fssres 6754 . . 3 ((𝐹:(Baseβ€˜π‘…)βŸΆβ„ ∧ 𝐢 βŠ† (Baseβ€˜π‘…)) β†’ (𝐹 β†Ύ 𝐢):πΆβŸΆβ„)
2421, 22, 23syl2an 596 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (𝐹 β†Ύ 𝐢):πΆβŸΆβ„)
2514subg0cl 19008 . . . 4 (𝐢 ∈ (SubGrpβ€˜π‘…) β†’ (0gβ€˜π‘…) ∈ 𝐢)
26 fvres 6907 . . . 4 ((0gβ€˜π‘…) ∈ 𝐢 β†’ ((𝐹 β†Ύ 𝐢)β€˜(0gβ€˜π‘…)) = (πΉβ€˜(0gβ€˜π‘…)))
2713, 25, 263syl 18 . . 3 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ ((𝐹 β†Ύ 𝐢)β€˜(0gβ€˜π‘…)) = (πΉβ€˜(0gβ€˜π‘…)))
2819, 14abv0 20431 . . . 4 (𝐹 ∈ 𝐴 β†’ (πΉβ€˜(0gβ€˜π‘…)) = 0)
2928adantr 481 . . 3 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (πΉβ€˜(0gβ€˜π‘…)) = 0)
3027, 29eqtrd 2772 . 2 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ ((𝐹 β†Ύ 𝐢)β€˜(0gβ€˜π‘…)) = 0)
31 simp1l 1197 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ 𝐹 ∈ 𝐴)
3222adantl 482 . . . . . 6 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ 𝐢 βŠ† (Baseβ€˜π‘…))
3332sselda 3981 . . . . 5 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
34333adant3 1132 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
35 simp3 1138 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ π‘₯ β‰  (0gβ€˜π‘…))
3619, 20, 14abvgt0 20428 . . . 4 ((𝐹 ∈ 𝐴 ∧ π‘₯ ∈ (Baseβ€˜π‘…) ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ 0 < (πΉβ€˜π‘₯))
3731, 34, 35, 36syl3anc 1371 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ 0 < (πΉβ€˜π‘₯))
38 fvres 6907 . . . 4 (π‘₯ ∈ 𝐢 β†’ ((𝐹 β†Ύ 𝐢)β€˜π‘₯) = (πΉβ€˜π‘₯))
39383ad2ant2 1134 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ ((𝐹 β†Ύ 𝐢)β€˜π‘₯) = (πΉβ€˜π‘₯))
4037, 39breqtrrd 5175 . 2 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) β†’ 0 < ((𝐹 β†Ύ 𝐢)β€˜π‘₯))
41 simp1l 1197 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ 𝐹 ∈ 𝐴)
42 simp1r 1198 . . . . . 6 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ 𝐢 ∈ (SubRingβ€˜π‘…))
4342, 22syl 17 . . . . 5 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ 𝐢 βŠ† (Baseβ€˜π‘…))
44 simp2l 1199 . . . . 5 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ π‘₯ ∈ 𝐢)
4543, 44sseldd 3982 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
46 simp3l 1201 . . . . 5 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ 𝑦 ∈ 𝐢)
4743, 46sseldd 3982 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ 𝑦 ∈ (Baseβ€˜π‘…))
4819, 20, 9abvmul 20429 . . . 4 ((𝐹 ∈ 𝐴 ∧ π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ (πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)))
4941, 45, 47, 48syl3anc 1371 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ (πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)))
509subrgmcl 20367 . . . . 5 ((𝐢 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ 𝐢)
5142, 44, 46, 50syl3anc 1371 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ 𝐢)
5251fvresd 6908 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ ((𝐹 β†Ύ 𝐢)β€˜(π‘₯(.rβ€˜π‘…)𝑦)) = (πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)))
5344fvresd 6908 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ ((𝐹 β†Ύ 𝐢)β€˜π‘₯) = (πΉβ€˜π‘₯))
5446fvresd 6908 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ ((𝐹 β†Ύ 𝐢)β€˜π‘¦) = (πΉβ€˜π‘¦))
5553, 54oveq12d 7423 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ (((𝐹 β†Ύ 𝐢)β€˜π‘₯) Β· ((𝐹 β†Ύ 𝐢)β€˜π‘¦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)))
5649, 52, 553eqtr4d 2782 . 2 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ ((𝐹 β†Ύ 𝐢)β€˜(π‘₯(.rβ€˜π‘…)𝑦)) = (((𝐹 β†Ύ 𝐢)β€˜π‘₯) Β· ((𝐹 β†Ύ 𝐢)β€˜π‘¦)))
5719, 20, 6abvtri 20430 . . . 4 ((𝐹 ∈ 𝐴 ∧ π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) β†’ (πΉβ€˜(π‘₯(+gβ€˜π‘…)𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
5841, 45, 47, 57syl3anc 1371 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ (πΉβ€˜(π‘₯(+gβ€˜π‘…)𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
596subrgacl 20366 . . . . 5 ((𝐢 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢) β†’ (π‘₯(+gβ€˜π‘…)𝑦) ∈ 𝐢)
6042, 44, 46, 59syl3anc 1371 . . . 4 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ (π‘₯(+gβ€˜π‘…)𝑦) ∈ 𝐢)
6160fvresd 6908 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ ((𝐹 β†Ύ 𝐢)β€˜(π‘₯(+gβ€˜π‘…)𝑦)) = (πΉβ€˜(π‘₯(+gβ€˜π‘…)𝑦)))
6253, 54oveq12d 7423 . . 3 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ (((𝐹 β†Ύ 𝐢)β€˜π‘₯) + ((𝐹 β†Ύ 𝐢)β€˜π‘¦)) = ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
6358, 61, 623brtr4d 5179 . 2 (((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) ∧ (π‘₯ ∈ 𝐢 ∧ π‘₯ β‰  (0gβ€˜π‘…)) ∧ (𝑦 ∈ 𝐢 ∧ 𝑦 β‰  (0gβ€˜π‘…))) β†’ ((𝐹 β†Ύ 𝐢)β€˜(π‘₯(+gβ€˜π‘…)𝑦)) ≀ (((𝐹 β†Ύ 𝐢)β€˜π‘₯) + ((𝐹 β†Ύ 𝐢)β€˜π‘¦)))
642, 5, 8, 11, 16, 18, 24, 30, 40, 56, 63isabvd 20420 1 ((𝐹 ∈ 𝐴 ∧ 𝐢 ∈ (SubRingβ€˜π‘…)) β†’ (𝐹 β†Ύ 𝐢) ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βŠ† wss 3947   class class class wbr 5147   β†Ύ cres 5677  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  0cc0 11106   + caddc 11109   Β· cmul 11111   < clt 11244   ≀ cle 11245  Basecbs 17140   β†Ύs cress 17169  +gcplusg 17193  .rcmulr 17194  0gc0g 17381  SubGrpcsubg 18994  Ringcrg 20049  SubRingcsubrg 20351  AbsValcabv 20416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-ico 13326  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997  df-mgp 19982  df-ring 20051  df-subrg 20353  df-abv 20417
This theorem is referenced by:  subrgnrg  24181  qabsabv  27121
  Copyright terms: Public domain W3C validator