MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   GIF version

Theorem abvres 19603
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a 𝐴 = (AbsVal‘𝑅)
abvres.s 𝑆 = (𝑅s 𝐶)
abvres.b 𝐵 = (AbsVal‘𝑆)
Assertion
Ref Expression
abvres ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem abvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3 𝐵 = (AbsVal‘𝑆)
21a1i 11 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐵 = (AbsVal‘𝑆))
3 abvres.s . . . 4 𝑆 = (𝑅s 𝐶)
43subrgbas 19537 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 = (Base‘𝑆))
54adantl 485 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 = (Base‘𝑆))
6 eqid 2798 . . . 4 (+g𝑅) = (+g𝑅)
73, 6ressplusg 16604 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
87adantl 485 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (+g𝑅) = (+g𝑆))
9 eqid 2798 . . . 4 (.r𝑅) = (.r𝑅)
103, 9ressmulr 16617 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1110adantl 485 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (.r𝑅) = (.r𝑆))
12 subrgsubg 19534 . . . 4 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ∈ (SubGrp‘𝑅))
1312adantl 485 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubGrp‘𝑅))
14 eqid 2798 . . . 4 (0g𝑅) = (0g𝑅)
153, 14subg0 18277 . . 3 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝑆))
1613, 15syl 17 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (0g𝑅) = (0g𝑆))
173subrgring 19531 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
1817adantl 485 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
19 abvres.a . . . 4 𝐴 = (AbsVal‘𝑅)
20 eqid 2798 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2119, 20abvf 19587 . . 3 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
2220subrgss 19529 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ⊆ (Base‘𝑅))
23 fssres 6518 . . 3 ((𝐹:(Base‘𝑅)⟶ℝ ∧ 𝐶 ⊆ (Base‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2421, 22, 23syl2an 598 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2514subg0cl 18279 . . . 4 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐶)
26 fvres 6664 . . . 4 ((0g𝑅) ∈ 𝐶 → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2713, 25, 263syl 18 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2819, 14abv0 19595 . . . 4 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
2928adantr 484 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
3027, 29eqtrd 2833 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = 0)
31 simp1l 1194 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝐹𝐴)
3222adantl 485 . . . . . 6 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
3332sselda 3915 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶) → 𝑥 ∈ (Base‘𝑅))
34333adant3 1129 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
35 simp3 1135 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
3619, 20, 14abvgt0 19592 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
3731, 34, 35, 36syl3anc 1368 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
38 fvres 6664 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
39383ad2ant2 1131 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
4037, 39breqtrrd 5058 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < ((𝐹𝐶)‘𝑥))
41 simp1l 1194 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐹𝐴)
42 simp1r 1195 . . . . . 6 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ∈ (SubRing‘𝑅))
4342, 22syl 17 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ⊆ (Base‘𝑅))
44 simp2l 1196 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥𝐶)
4543, 44sseldd 3916 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
46 simp3l 1198 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦𝐶)
4743, 46sseldd 3916 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
4819, 20, 9abvmul 19593 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
4941, 45, 47, 48syl3anc 1368 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
509subrgmcl 19540 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5142, 44, 46, 50syl3anc 1368 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5251fvresd 6665 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5344fvresd 6665 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
5446fvresd 6665 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5553, 54oveq12d 7153 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
5649, 52, 553eqtr4d 2843 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)))
5719, 20, 6abvtri 19594 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
5841, 45, 47, 57syl3anc 1368 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
596subrgacl 19539 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6042, 44, 46, 59syl3anc 1368 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6160fvresd 6665 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6253, 54oveq12d 7153 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
6358, 61, 623brtr4d 5062 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) ≤ (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)))
642, 5, 8, 11, 16, 18, 24, 30, 40, 56, 63isabvd 19584 1 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wss 3881   class class class wbr 5030  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  Basecbs 16475  s cress 16476  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  SubGrpcsubg 18265  Ringcrg 19290  SubRingcsubrg 19524  AbsValcabv 19580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ico 12732  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-mgp 19233  df-ring 19292  df-subrg 19526  df-abv 19581
This theorem is referenced by:  subrgnrg  23279  qabsabv  26213
  Copyright terms: Public domain W3C validator