MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   GIF version

Theorem abvres 20014
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a 𝐴 = (AbsVal‘𝑅)
abvres.s 𝑆 = (𝑅s 𝐶)
abvres.b 𝐵 = (AbsVal‘𝑆)
Assertion
Ref Expression
abvres ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem abvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3 𝐵 = (AbsVal‘𝑆)
21a1i 11 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐵 = (AbsVal‘𝑆))
3 abvres.s . . . 4 𝑆 = (𝑅s 𝐶)
43subrgbas 19948 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 = (Base‘𝑆))
54adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 = (Base‘𝑆))
6 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
73, 6ressplusg 16926 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
87adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (+g𝑅) = (+g𝑆))
9 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
103, 9ressmulr 16943 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1110adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (.r𝑅) = (.r𝑆))
12 subrgsubg 19945 . . . 4 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ∈ (SubGrp‘𝑅))
1312adantl 481 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubGrp‘𝑅))
14 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
153, 14subg0 18676 . . 3 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝑆))
1613, 15syl 17 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (0g𝑅) = (0g𝑆))
173subrgring 19942 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
1817adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
19 abvres.a . . . 4 𝐴 = (AbsVal‘𝑅)
20 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2119, 20abvf 19998 . . 3 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
2220subrgss 19940 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ⊆ (Base‘𝑅))
23 fssres 6624 . . 3 ((𝐹:(Base‘𝑅)⟶ℝ ∧ 𝐶 ⊆ (Base‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2421, 22, 23syl2an 595 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2514subg0cl 18678 . . . 4 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐶)
26 fvres 6775 . . . 4 ((0g𝑅) ∈ 𝐶 → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2713, 25, 263syl 18 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2819, 14abv0 20006 . . . 4 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
2928adantr 480 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
3027, 29eqtrd 2778 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = 0)
31 simp1l 1195 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝐹𝐴)
3222adantl 481 . . . . . 6 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
3332sselda 3917 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶) → 𝑥 ∈ (Base‘𝑅))
34333adant3 1130 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
35 simp3 1136 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
3619, 20, 14abvgt0 20003 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
3731, 34, 35, 36syl3anc 1369 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
38 fvres 6775 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
39383ad2ant2 1132 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
4037, 39breqtrrd 5098 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < ((𝐹𝐶)‘𝑥))
41 simp1l 1195 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐹𝐴)
42 simp1r 1196 . . . . . 6 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ∈ (SubRing‘𝑅))
4342, 22syl 17 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ⊆ (Base‘𝑅))
44 simp2l 1197 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥𝐶)
4543, 44sseldd 3918 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
46 simp3l 1199 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦𝐶)
4743, 46sseldd 3918 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
4819, 20, 9abvmul 20004 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
4941, 45, 47, 48syl3anc 1369 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
509subrgmcl 19951 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5142, 44, 46, 50syl3anc 1369 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5251fvresd 6776 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5344fvresd 6776 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
5446fvresd 6776 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5553, 54oveq12d 7273 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
5649, 52, 553eqtr4d 2788 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)))
5719, 20, 6abvtri 20005 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
5841, 45, 47, 57syl3anc 1369 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
596subrgacl 19950 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6042, 44, 46, 59syl3anc 1369 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6160fvresd 6776 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6253, 54oveq12d 7273 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
6358, 61, 623brtr4d 5102 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) ≤ (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)))
642, 5, 8, 11, 16, 18, 24, 30, 40, 56, 63isabvd 19995 1 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883   class class class wbr 5070  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  SubGrpcsubg 18664  Ringcrg 19698  SubRingcsubrg 19935  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-ico 13014  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-mgp 19636  df-ring 19700  df-subrg 19937  df-abv 19992
This theorem is referenced by:  subrgnrg  23743  qabsabv  26682
  Copyright terms: Public domain W3C validator