MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   GIF version

Theorem abvres 20716
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a 𝐴 = (AbsVal‘𝑅)
abvres.s 𝑆 = (𝑅s 𝐶)
abvres.b 𝐵 = (AbsVal‘𝑆)
Assertion
Ref Expression
abvres ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)

Proof of Theorem abvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3 𝐵 = (AbsVal‘𝑆)
21a1i 11 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐵 = (AbsVal‘𝑆))
3 abvres.s . . . 4 𝑆 = (𝑅s 𝐶)
43subrgbas 20466 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 = (Base‘𝑆))
54adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 = (Base‘𝑆))
6 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
73, 6ressplusg 17195 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝑆))
87adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (+g𝑅) = (+g𝑆))
9 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
103, 9ressmulr 17211 . . 3 (𝐶 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1110adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (.r𝑅) = (.r𝑆))
12 subrgsubg 20462 . . . 4 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ∈ (SubGrp‘𝑅))
1312adantl 481 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubGrp‘𝑅))
14 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
153, 14subg0 19011 . . 3 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝑆))
1613, 15syl 17 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (0g𝑅) = (0g𝑆))
173subrgring 20459 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
1817adantl 481 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
19 abvres.a . . . 4 𝐴 = (AbsVal‘𝑅)
20 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2119, 20abvf 20700 . . 3 (𝐹𝐴𝐹:(Base‘𝑅)⟶ℝ)
2220subrgss 20457 . . 3 (𝐶 ∈ (SubRing‘𝑅) → 𝐶 ⊆ (Base‘𝑅))
23 fssres 6690 . . 3 ((𝐹:(Base‘𝑅)⟶ℝ ∧ 𝐶 ⊆ (Base‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2421, 22, 23syl2an 596 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶):𝐶⟶ℝ)
2514subg0cl 19013 . . . 4 (𝐶 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐶)
26 fvres 6841 . . . 4 ((0g𝑅) ∈ 𝐶 → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2713, 25, 263syl 18 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = (𝐹‘(0g𝑅)))
2819, 14abv0 20708 . . . 4 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
2928adantr 480 . . 3 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹‘(0g𝑅)) = 0)
3027, 29eqtrd 2764 . 2 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → ((𝐹𝐶)‘(0g𝑅)) = 0)
31 simp1l 1198 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝐹𝐴)
3222adantl 481 . . . . . 6 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
3332sselda 3935 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶) → 𝑥 ∈ (Base‘𝑅))
34333adant3 1132 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ∈ (Base‘𝑅))
35 simp3 1138 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 𝑥 ≠ (0g𝑅))
3619, 20, 14abvgt0 20705 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
3731, 34, 35, 36syl3anc 1373 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < (𝐹𝑥))
38 fvres 6841 . . . 4 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
39383ad2ant2 1134 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
4037, 39breqtrrd 5120 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ 𝑥𝐶𝑥 ≠ (0g𝑅)) → 0 < ((𝐹𝐶)‘𝑥))
41 simp1l 1198 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐹𝐴)
42 simp1r 1199 . . . . . 6 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ∈ (SubRing‘𝑅))
4342, 22syl 17 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝐶 ⊆ (Base‘𝑅))
44 simp2l 1200 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥𝐶)
4543, 44sseldd 3936 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑥 ∈ (Base‘𝑅))
46 simp3l 1202 . . . . 5 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦𝐶)
4743, 46sseldd 3936 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → 𝑦 ∈ (Base‘𝑅))
4819, 20, 9abvmul 20706 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
4941, 45, 47, 48syl3anc 1373 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
509subrgmcl 20469 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5142, 44, 46, 50syl3anc 1373 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(.r𝑅)𝑦) ∈ 𝐶)
5251fvresd 6842 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (𝐹‘(𝑥(.r𝑅)𝑦)))
5344fvresd 6842 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
5446fvresd 6842 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
5553, 54oveq12d 7367 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
5649, 52, 553eqtr4d 2774 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(.r𝑅)𝑦)) = (((𝐹𝐶)‘𝑥) · ((𝐹𝐶)‘𝑦)))
5719, 20, 6abvtri 20707 . . . 4 ((𝐹𝐴𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
5841, 45, 47, 57syl3anc 1373 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
596subrgacl 20468 . . . . 5 ((𝐶 ∈ (SubRing‘𝑅) ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6042, 44, 46, 59syl3anc 1373 . . . 4 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (𝑥(+g𝑅)𝑦) ∈ 𝐶)
6160fvresd 6842 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
6253, 54oveq12d 7367 . . 3 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
6358, 61, 623brtr4d 5124 . 2 (((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) ∧ (𝑥𝐶𝑥 ≠ (0g𝑅)) ∧ (𝑦𝐶𝑦 ≠ (0g𝑅))) → ((𝐹𝐶)‘(𝑥(+g𝑅)𝑦)) ≤ (((𝐹𝐶)‘𝑥) + ((𝐹𝐶)‘𝑦)))
642, 5, 8, 11, 16, 18, 24, 30, 40, 56, 63isabvd 20697 1 ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3903   class class class wbr 5092  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  SubGrpcsubg 18999  Ringcrg 20118  SubRingcsubrg 20454  AbsValcabv 20693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-ico 13254  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-abv 20694
This theorem is referenced by:  subrgnrg  24559  qabsabv  27538
  Copyright terms: Public domain W3C validator