MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Visualization version   GIF version

Theorem qabvle 26193
Description: By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvle ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)

Proof of Theorem qabvle
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . 5 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
2 id 22 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
31, 2breq12d 5070 . . . 4 (𝑘 = 0 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘0) ≤ 0))
43imbi2d 343 . . 3 (𝑘 = 0 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘0) ≤ 0)))
5 fveq2 6663 . . . . 5 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
6 id 22 . . . . 5 (𝑘 = 𝑛𝑘 = 𝑛)
75, 6breq12d 5070 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑛) ≤ 𝑛))
87imbi2d 343 . . 3 (𝑘 = 𝑛 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑛) ≤ 𝑛)))
9 fveq2 6663 . . . . 5 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
10 id 22 . . . . 5 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
119, 10breq12d 5070 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
1211imbi2d 343 . . 3 (𝑘 = (𝑛 + 1) → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
13 fveq2 6663 . . . . 5 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
14 id 22 . . . . 5 (𝑘 = 𝑁𝑘 = 𝑁)
1513, 14breq12d 5070 . . . 4 (𝑘 = 𝑁 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑁) ≤ 𝑁))
1615imbi2d 343 . . 3 (𝑘 = 𝑁 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁)))
17 qabsabv.a . . . . 5 𝐴 = (AbsVal‘𝑄)
18 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
1918qrng0 26189 . . . . 5 0 = (0g𝑄)
2017, 19abv0 19594 . . . 4 (𝐹𝐴 → (𝐹‘0) = 0)
21 0le0 11730 . . . 4 0 ≤ 0
2220, 21eqbrtrdi 5096 . . 3 (𝐹𝐴 → (𝐹‘0) ≤ 0)
23 nn0p1nn 11928 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
2423ad2antrl 726 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℕ)
25 nnq 12353 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℚ)
2624, 25syl 17 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℚ)
2718qrngbas 26187 . . . . . . . . 9 ℚ = (Base‘𝑄)
2817, 27abvcl 19587 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 + 1) ∈ ℚ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
2926, 28syldan 593 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
30 nn0z 11997 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3130ad2antrl 726 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℤ)
32 zq 12346 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℚ)
3331, 32syl 17 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℚ)
3417, 27abvcl 19587 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
3533, 34syldan 593 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ∈ ℝ)
36 peano2re 10805 . . . . . . . 8 ((𝐹𝑛) ∈ ℝ → ((𝐹𝑛) + 1) ∈ ℝ)
3735, 36syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ∈ ℝ)
3831zred 12079 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℝ)
39 peano2re 10805 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
4038, 39syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℝ)
41 simpl 485 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝐹𝐴)
42 1z 12004 . . . . . . . . . 10 1 ∈ ℤ
43 zq 12346 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
4442, 43mp1i 13 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℚ)
45 qex 12352 . . . . . . . . . . 11 ℚ ∈ V
46 cnfldadd 20542 . . . . . . . . . . . 12 + = (+g‘ℂfld)
4718, 46ressplusg 16604 . . . . . . . . . . 11 (ℚ ∈ V → + = (+g𝑄))
4845, 47ax-mp 5 . . . . . . . . . 10 + = (+g𝑄)
4917, 27, 48abvtri 19593 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
5041, 33, 44, 49syl3anc 1366 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
51 ax-1ne0 10598 . . . . . . . . . . 11 1 ≠ 0
5218qrng1 26190 . . . . . . . . . . . 12 1 = (1r𝑄)
5317, 52, 19abv1z 19595 . . . . . . . . . . 11 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
5451, 53mpan2 689 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘1) = 1)
5554adantr 483 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘1) = 1)
5655oveq2d 7164 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + (𝐹‘1)) = ((𝐹𝑛) + 1))
5750, 56breqtrd 5083 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + 1))
58 1red 10634 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℝ)
59 simprr 771 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ≤ 𝑛)
6035, 38, 58, 59leadd1dd 11246 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ≤ (𝑛 + 1))
6129, 37, 40, 57, 60letrd 10789 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))
6261expr 459 . . . . 5 ((𝐹𝐴𝑛 ∈ ℕ0) → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
6362expcom 416 . . . 4 (𝑛 ∈ ℕ0 → (𝐹𝐴 → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
6463a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐹𝐴 → (𝐹𝑛) ≤ 𝑛) → (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
654, 8, 12, 16, 22, 64nn0ind 12069 . 2 (𝑁 ∈ ℕ0 → (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁))
6665impcom 410 1 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wne 3014  Vcvv 3493   class class class wbr 5057  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  cle 10668  cn 11630  0cn0 11889  cz 11973  cq 12340  s cress 16476  +gcplusg 16557  AbsValcabv 19579  fldccnfld 20537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-ico 12736  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-drng 19496  df-subrg 19525  df-abv 19580  df-cnfld 20538
This theorem is referenced by:  ostth2lem2  26202  ostth2  26205
  Copyright terms: Public domain W3C validator