MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Visualization version   GIF version

Theorem qabvle 27684
Description: By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvle ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)

Proof of Theorem qabvle
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
2 id 22 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
31, 2breq12d 5161 . . . 4 (𝑘 = 0 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘0) ≤ 0))
43imbi2d 340 . . 3 (𝑘 = 0 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘0) ≤ 0)))
5 fveq2 6907 . . . . 5 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
6 id 22 . . . . 5 (𝑘 = 𝑛𝑘 = 𝑛)
75, 6breq12d 5161 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑛) ≤ 𝑛))
87imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑛) ≤ 𝑛)))
9 fveq2 6907 . . . . 5 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
10 id 22 . . . . 5 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
119, 10breq12d 5161 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
1211imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
13 fveq2 6907 . . . . 5 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
14 id 22 . . . . 5 (𝑘 = 𝑁𝑘 = 𝑁)
1513, 14breq12d 5161 . . . 4 (𝑘 = 𝑁 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑁) ≤ 𝑁))
1615imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁)))
17 qabsabv.a . . . . 5 𝐴 = (AbsVal‘𝑄)
18 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
1918qrng0 27680 . . . . 5 0 = (0g𝑄)
2017, 19abv0 20841 . . . 4 (𝐹𝐴 → (𝐹‘0) = 0)
21 0le0 12365 . . . 4 0 ≤ 0
2220, 21eqbrtrdi 5187 . . 3 (𝐹𝐴 → (𝐹‘0) ≤ 0)
23 nn0p1nn 12563 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
2423ad2antrl 728 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℕ)
25 nnq 13002 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℚ)
2624, 25syl 17 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℚ)
2718qrngbas 27678 . . . . . . . . 9 ℚ = (Base‘𝑄)
2817, 27abvcl 20834 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 + 1) ∈ ℚ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
2926, 28syldan 591 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
30 nn0z 12636 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3130ad2antrl 728 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℤ)
32 zq 12994 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℚ)
3331, 32syl 17 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℚ)
3417, 27abvcl 20834 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
3533, 34syldan 591 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ∈ ℝ)
36 peano2re 11432 . . . . . . . 8 ((𝐹𝑛) ∈ ℝ → ((𝐹𝑛) + 1) ∈ ℝ)
3735, 36syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ∈ ℝ)
3831zred 12720 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℝ)
39 peano2re 11432 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
4038, 39syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℝ)
41 simpl 482 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝐹𝐴)
42 1z 12645 . . . . . . . . . 10 1 ∈ ℤ
43 zq 12994 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
4442, 43mp1i 13 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℚ)
45 qex 13001 . . . . . . . . . . 11 ℚ ∈ V
46 cnfldadd 21388 . . . . . . . . . . . 12 + = (+g‘ℂfld)
4718, 46ressplusg 17336 . . . . . . . . . . 11 (ℚ ∈ V → + = (+g𝑄))
4845, 47ax-mp 5 . . . . . . . . . 10 + = (+g𝑄)
4917, 27, 48abvtri 20840 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
5041, 33, 44, 49syl3anc 1370 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
51 ax-1ne0 11222 . . . . . . . . . . 11 1 ≠ 0
5218qrng1 27681 . . . . . . . . . . . 12 1 = (1r𝑄)
5317, 52, 19abv1z 20842 . . . . . . . . . . 11 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
5451, 53mpan2 691 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘1) = 1)
5554adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘1) = 1)
5655oveq2d 7447 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + (𝐹‘1)) = ((𝐹𝑛) + 1))
5750, 56breqtrd 5174 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + 1))
58 1red 11260 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℝ)
59 simprr 773 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ≤ 𝑛)
6035, 38, 58, 59leadd1dd 11875 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ≤ (𝑛 + 1))
6129, 37, 40, 57, 60letrd 11416 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))
6261expr 456 . . . . 5 ((𝐹𝐴𝑛 ∈ ℕ0) → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
6362expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝐹𝐴 → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
6463a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐹𝐴 → (𝐹𝑛) ≤ 𝑛) → (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
654, 8, 12, 16, 22, 64nn0ind 12711 . 2 (𝑁 ∈ ℕ0 → (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁))
6665impcom 407 1 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  cn 12264  0cn0 12524  cz 12611  cq 12988  s cress 17274  +gcplusg 17298  AbsValcabv 20826  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-ico 13390  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-abv 20827  df-cnfld 21383
This theorem is referenced by:  ostth2lem2  27693  ostth2  27696
  Copyright terms: Public domain W3C validator