MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Visualization version   GIF version

Theorem qabvle 27563
Description: By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvle ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)

Proof of Theorem qabvle
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
2 id 22 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
31, 2breq12d 5102 . . . 4 (𝑘 = 0 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘0) ≤ 0))
43imbi2d 340 . . 3 (𝑘 = 0 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘0) ≤ 0)))
5 fveq2 6822 . . . . 5 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
6 id 22 . . . . 5 (𝑘 = 𝑛𝑘 = 𝑛)
75, 6breq12d 5102 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑛) ≤ 𝑛))
87imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑛) ≤ 𝑛)))
9 fveq2 6822 . . . . 5 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
10 id 22 . . . . 5 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
119, 10breq12d 5102 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
1211imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
13 fveq2 6822 . . . . 5 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
14 id 22 . . . . 5 (𝑘 = 𝑁𝑘 = 𝑁)
1513, 14breq12d 5102 . . . 4 (𝑘 = 𝑁 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑁) ≤ 𝑁))
1615imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁)))
17 qabsabv.a . . . . 5 𝐴 = (AbsVal‘𝑄)
18 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
1918qrng0 27559 . . . . 5 0 = (0g𝑄)
2017, 19abv0 20738 . . . 4 (𝐹𝐴 → (𝐹‘0) = 0)
21 0le0 12226 . . . 4 0 ≤ 0
2220, 21eqbrtrdi 5128 . . 3 (𝐹𝐴 → (𝐹‘0) ≤ 0)
23 nn0p1nn 12420 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
2423ad2antrl 728 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℕ)
25 nnq 12860 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℚ)
2624, 25syl 17 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℚ)
2718qrngbas 27557 . . . . . . . . 9 ℚ = (Base‘𝑄)
2817, 27abvcl 20731 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 + 1) ∈ ℚ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
2926, 28syldan 591 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
30 nn0z 12493 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3130ad2antrl 728 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℤ)
32 zq 12852 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℚ)
3331, 32syl 17 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℚ)
3417, 27abvcl 20731 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
3533, 34syldan 591 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ∈ ℝ)
36 peano2re 11286 . . . . . . . 8 ((𝐹𝑛) ∈ ℝ → ((𝐹𝑛) + 1) ∈ ℝ)
3735, 36syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ∈ ℝ)
3831zred 12577 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℝ)
39 peano2re 11286 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
4038, 39syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℝ)
41 simpl 482 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝐹𝐴)
42 1z 12502 . . . . . . . . . 10 1 ∈ ℤ
43 zq 12852 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
4442, 43mp1i 13 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℚ)
45 qex 12859 . . . . . . . . . . 11 ℚ ∈ V
46 cnfldadd 21297 . . . . . . . . . . . 12 + = (+g‘ℂfld)
4718, 46ressplusg 17195 . . . . . . . . . . 11 (ℚ ∈ V → + = (+g𝑄))
4845, 47ax-mp 5 . . . . . . . . . 10 + = (+g𝑄)
4917, 27, 48abvtri 20737 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
5041, 33, 44, 49syl3anc 1373 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
51 ax-1ne0 11075 . . . . . . . . . . 11 1 ≠ 0
5218qrng1 27560 . . . . . . . . . . . 12 1 = (1r𝑄)
5317, 52, 19abv1z 20739 . . . . . . . . . . 11 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
5451, 53mpan2 691 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘1) = 1)
5554adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘1) = 1)
5655oveq2d 7362 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + (𝐹‘1)) = ((𝐹𝑛) + 1))
5750, 56breqtrd 5115 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + 1))
58 1red 11113 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℝ)
59 simprr 772 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ≤ 𝑛)
6035, 38, 58, 59leadd1dd 11731 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ≤ (𝑛 + 1))
6129, 37, 40, 57, 60letrd 11270 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))
6261expr 456 . . . . 5 ((𝐹𝐴𝑛 ∈ ℕ0) → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
6362expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝐹𝐴 → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
6463a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐹𝐴 → (𝐹𝑛) ≤ 𝑛) → (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
654, 8, 12, 16, 22, 64nn0ind 12568 . 2 (𝑁 ∈ ℕ0 → (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁))
6665impcom 407 1 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  cn 12125  0cn0 12381  cz 12468  cq 12846  s cress 17141  +gcplusg 17161  AbsValcabv 20723  fldccnfld 21291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-ico 13251  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-subrng 20461  df-subrg 20485  df-drng 20646  df-abv 20724  df-cnfld 21292
This theorem is referenced by:  ostth2lem2  27572  ostth2  27575
  Copyright terms: Public domain W3C validator