MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Visualization version   GIF version

Theorem qabvle 27669
Description: By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvle ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)

Proof of Theorem qabvle
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
2 id 22 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
31, 2breq12d 5156 . . . 4 (𝑘 = 0 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘0) ≤ 0))
43imbi2d 340 . . 3 (𝑘 = 0 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘0) ≤ 0)))
5 fveq2 6906 . . . . 5 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
6 id 22 . . . . 5 (𝑘 = 𝑛𝑘 = 𝑛)
75, 6breq12d 5156 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑛) ≤ 𝑛))
87imbi2d 340 . . 3 (𝑘 = 𝑛 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑛) ≤ 𝑛)))
9 fveq2 6906 . . . . 5 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
10 id 22 . . . . 5 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
119, 10breq12d 5156 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
1211imbi2d 340 . . 3 (𝑘 = (𝑛 + 1) → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
13 fveq2 6906 . . . . 5 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
14 id 22 . . . . 5 (𝑘 = 𝑁𝑘 = 𝑁)
1513, 14breq12d 5156 . . . 4 (𝑘 = 𝑁 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑁) ≤ 𝑁))
1615imbi2d 340 . . 3 (𝑘 = 𝑁 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁)))
17 qabsabv.a . . . . 5 𝐴 = (AbsVal‘𝑄)
18 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
1918qrng0 27665 . . . . 5 0 = (0g𝑄)
2017, 19abv0 20824 . . . 4 (𝐹𝐴 → (𝐹‘0) = 0)
21 0le0 12367 . . . 4 0 ≤ 0
2220, 21eqbrtrdi 5182 . . 3 (𝐹𝐴 → (𝐹‘0) ≤ 0)
23 nn0p1nn 12565 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
2423ad2antrl 728 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℕ)
25 nnq 13004 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℚ)
2624, 25syl 17 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℚ)
2718qrngbas 27663 . . . . . . . . 9 ℚ = (Base‘𝑄)
2817, 27abvcl 20817 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 + 1) ∈ ℚ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
2926, 28syldan 591 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
30 nn0z 12638 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3130ad2antrl 728 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℤ)
32 zq 12996 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℚ)
3331, 32syl 17 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℚ)
3417, 27abvcl 20817 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
3533, 34syldan 591 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ∈ ℝ)
36 peano2re 11434 . . . . . . . 8 ((𝐹𝑛) ∈ ℝ → ((𝐹𝑛) + 1) ∈ ℝ)
3735, 36syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ∈ ℝ)
3831zred 12722 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℝ)
39 peano2re 11434 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
4038, 39syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℝ)
41 simpl 482 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝐹𝐴)
42 1z 12647 . . . . . . . . . 10 1 ∈ ℤ
43 zq 12996 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
4442, 43mp1i 13 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℚ)
45 qex 13003 . . . . . . . . . . 11 ℚ ∈ V
46 cnfldadd 21370 . . . . . . . . . . . 12 + = (+g‘ℂfld)
4718, 46ressplusg 17334 . . . . . . . . . . 11 (ℚ ∈ V → + = (+g𝑄))
4845, 47ax-mp 5 . . . . . . . . . 10 + = (+g𝑄)
4917, 27, 48abvtri 20823 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
5041, 33, 44, 49syl3anc 1373 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
51 ax-1ne0 11224 . . . . . . . . . . 11 1 ≠ 0
5218qrng1 27666 . . . . . . . . . . . 12 1 = (1r𝑄)
5317, 52, 19abv1z 20825 . . . . . . . . . . 11 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
5451, 53mpan2 691 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘1) = 1)
5554adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘1) = 1)
5655oveq2d 7447 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + (𝐹‘1)) = ((𝐹𝑛) + 1))
5750, 56breqtrd 5169 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + 1))
58 1red 11262 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℝ)
59 simprr 773 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ≤ 𝑛)
6035, 38, 58, 59leadd1dd 11877 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ≤ (𝑛 + 1))
6129, 37, 40, 57, 60letrd 11418 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))
6261expr 456 . . . . 5 ((𝐹𝐴𝑛 ∈ ℕ0) → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
6362expcom 413 . . . 4 (𝑛 ∈ ℕ0 → (𝐹𝐴 → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
6463a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐹𝐴 → (𝐹𝑛) ≤ 𝑛) → (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
654, 8, 12, 16, 22, 64nn0ind 12713 . 2 (𝑁 ∈ ℕ0 → (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁))
6665impcom 407 1 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  cn 12266  0cn0 12526  cz 12613  cq 12990  s cress 17274  +gcplusg 17297  AbsValcabv 20809  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-ico 13393  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-subrng 20546  df-subrg 20570  df-drng 20731  df-abv 20810  df-cnfld 21365
This theorem is referenced by:  ostth2lem2  27678  ostth2  27681
  Copyright terms: Public domain W3C validator