| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
| 2 | | id 22 |
. . . . 5
⊢ (𝑘 = 0 → 𝑘 = 0) |
| 3 | 1, 2 | breq12d 5137 |
. . . 4
⊢ (𝑘 = 0 → ((𝐹‘𝑘) ≤ 𝑘 ↔ (𝐹‘0) ≤ 0)) |
| 4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑘 = 0 → ((𝐹 ∈ 𝐴 → (𝐹‘𝑘) ≤ 𝑘) ↔ (𝐹 ∈ 𝐴 → (𝐹‘0) ≤ 0))) |
| 5 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 6 | | id 22 |
. . . . 5
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
| 7 | 5, 6 | breq12d 5137 |
. . . 4
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ≤ 𝑘 ↔ (𝐹‘𝑛) ≤ 𝑛)) |
| 8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑘 = 𝑛 → ((𝐹 ∈ 𝐴 → (𝐹‘𝑘) ≤ 𝑘) ↔ (𝐹 ∈ 𝐴 → (𝐹‘𝑛) ≤ 𝑛))) |
| 9 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 10 | | id 22 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1)) |
| 11 | 9, 10 | breq12d 5137 |
. . . 4
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ≤ 𝑘 ↔ (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))) |
| 12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑘 = (𝑛 + 1) → ((𝐹 ∈ 𝐴 → (𝐹‘𝑘) ≤ 𝑘) ↔ (𝐹 ∈ 𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))) |
| 13 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
| 14 | | id 22 |
. . . . 5
⊢ (𝑘 = 𝑁 → 𝑘 = 𝑁) |
| 15 | 13, 14 | breq12d 5137 |
. . . 4
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ≤ 𝑘 ↔ (𝐹‘𝑁) ≤ 𝑁)) |
| 16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑘 = 𝑁 → ((𝐹 ∈ 𝐴 → (𝐹‘𝑘) ≤ 𝑘) ↔ (𝐹 ∈ 𝐴 → (𝐹‘𝑁) ≤ 𝑁))) |
| 17 | | qabsabv.a |
. . . . 5
⊢ 𝐴 = (AbsVal‘𝑄) |
| 18 | | qrng.q |
. . . . . 6
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 19 | 18 | qrng0 27589 |
. . . . 5
⊢ 0 =
(0g‘𝑄) |
| 20 | 17, 19 | abv0 20788 |
. . . 4
⊢ (𝐹 ∈ 𝐴 → (𝐹‘0) = 0) |
| 21 | | 0le0 12346 |
. . . 4
⊢ 0 ≤
0 |
| 22 | 20, 21 | eqbrtrdi 5163 |
. . 3
⊢ (𝐹 ∈ 𝐴 → (𝐹‘0) ≤ 0) |
| 23 | | nn0p1nn 12545 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ) |
| 24 | 23 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℕ) |
| 25 | | nnq 12983 |
. . . . . . . . 9
⊢ ((𝑛 + 1) ∈ ℕ →
(𝑛 + 1) ∈
ℚ) |
| 26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℚ) |
| 27 | 18 | qrngbas 27587 |
. . . . . . . . 9
⊢ ℚ =
(Base‘𝑄) |
| 28 | 17, 27 | abvcl 20781 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 + 1) ∈ ℚ) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
| 29 | 26, 28 | syldan 591 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
| 30 | | nn0z 12618 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 31 | 30 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → 𝑛 ∈ ℤ) |
| 32 | | zq 12975 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℚ) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → 𝑛 ∈ ℚ) |
| 34 | 17, 27 | abvcl 20781 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ) → (𝐹‘𝑛) ∈ ℝ) |
| 35 | 33, 34 | syldan 591 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘𝑛) ∈ ℝ) |
| 36 | | peano2re 11413 |
. . . . . . . 8
⊢ ((𝐹‘𝑛) ∈ ℝ → ((𝐹‘𝑛) + 1) ∈ ℝ) |
| 37 | 35, 36 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → ((𝐹‘𝑛) + 1) ∈ ℝ) |
| 38 | 31 | zred 12702 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → 𝑛 ∈ ℝ) |
| 39 | | peano2re 11413 |
. . . . . . . 8
⊢ (𝑛 ∈ ℝ → (𝑛 + 1) ∈
ℝ) |
| 40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℝ) |
| 41 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → 𝐹 ∈ 𝐴) |
| 42 | | 1z 12627 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 43 | | zq 12975 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → 1 ∈ ℚ) |
| 44 | 42, 43 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → 1 ∈ ℚ) |
| 45 | | qex 12982 |
. . . . . . . . . . 11
⊢ ℚ
∈ V |
| 46 | | cnfldadd 21326 |
. . . . . . . . . . . 12
⊢ + =
(+g‘ℂfld) |
| 47 | 18, 46 | ressplusg 17310 |
. . . . . . . . . . 11
⊢ (ℚ
∈ V → + = (+g‘𝑄)) |
| 48 | 45, 47 | ax-mp 5 |
. . . . . . . . . 10
⊢ + =
(+g‘𝑄) |
| 49 | 17, 27, 48 | abvtri 20787 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ ∧ 1 ∈ ℚ)
→ (𝐹‘(𝑛 + 1)) ≤ ((𝐹‘𝑛) + (𝐹‘1))) |
| 50 | 41, 33, 44, 49 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹‘𝑛) + (𝐹‘1))) |
| 51 | | ax-1ne0 11203 |
. . . . . . . . . . 11
⊢ 1 ≠
0 |
| 52 | 18 | qrng1 27590 |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘𝑄) |
| 53 | 17, 52, 19 | abv1z 20789 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1) |
| 54 | 51, 53 | mpan2 691 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐴 → (𝐹‘1) = 1) |
| 55 | 54 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘1) = 1) |
| 56 | 55 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → ((𝐹‘𝑛) + (𝐹‘1)) = ((𝐹‘𝑛) + 1)) |
| 57 | 50, 56 | breqtrd 5150 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹‘𝑛) + 1)) |
| 58 | | 1red 11241 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → 1 ∈ ℝ) |
| 59 | | simprr 772 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘𝑛) ≤ 𝑛) |
| 60 | 35, 38, 58, 59 | leadd1dd 11856 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → ((𝐹‘𝑛) + 1) ≤ (𝑛 + 1)) |
| 61 | 29, 37, 40, 57, 60 | letrd 11397 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)) |
| 62 | 61 | expr 456 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))) |
| 63 | 62 | expcom 413 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (𝐹 ∈ 𝐴 → ((𝐹‘𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))) |
| 64 | 63 | a2d 29 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ ((𝐹 ∈ 𝐴 → (𝐹‘𝑛) ≤ 𝑛) → (𝐹 ∈ 𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))) |
| 65 | 4, 8, 12, 16, 22, 64 | nn0ind 12693 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐹 ∈ 𝐴 → (𝐹‘𝑁) ≤ 𝑁)) |
| 66 | 65 | impcom 407 |
1
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) ≤ 𝑁) |