MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Visualization version   GIF version

Theorem qabvle 26209
Description: By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvle ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)

Proof of Theorem qabvle
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . 5 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
2 id 22 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
31, 2breq12d 5043 . . . 4 (𝑘 = 0 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘0) ≤ 0))
43imbi2d 344 . . 3 (𝑘 = 0 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘0) ≤ 0)))
5 fveq2 6645 . . . . 5 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
6 id 22 . . . . 5 (𝑘 = 𝑛𝑘 = 𝑛)
75, 6breq12d 5043 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑛) ≤ 𝑛))
87imbi2d 344 . . 3 (𝑘 = 𝑛 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑛) ≤ 𝑛)))
9 fveq2 6645 . . . . 5 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
10 id 22 . . . . 5 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
119, 10breq12d 5043 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
1211imbi2d 344 . . 3 (𝑘 = (𝑛 + 1) → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
13 fveq2 6645 . . . . 5 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
14 id 22 . . . . 5 (𝑘 = 𝑁𝑘 = 𝑁)
1513, 14breq12d 5043 . . . 4 (𝑘 = 𝑁 → ((𝐹𝑘) ≤ 𝑘 ↔ (𝐹𝑁) ≤ 𝑁))
1615imbi2d 344 . . 3 (𝑘 = 𝑁 → ((𝐹𝐴 → (𝐹𝑘) ≤ 𝑘) ↔ (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁)))
17 qabsabv.a . . . . 5 𝐴 = (AbsVal‘𝑄)
18 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
1918qrng0 26205 . . . . 5 0 = (0g𝑄)
2017, 19abv0 19595 . . . 4 (𝐹𝐴 → (𝐹‘0) = 0)
21 0le0 11726 . . . 4 0 ≤ 0
2220, 21eqbrtrdi 5069 . . 3 (𝐹𝐴 → (𝐹‘0) ≤ 0)
23 nn0p1nn 11924 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
2423ad2antrl 727 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℕ)
25 nnq 12349 . . . . . . . . 9 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℚ)
2624, 25syl 17 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℚ)
2718qrngbas 26203 . . . . . . . . 9 ℚ = (Base‘𝑄)
2817, 27abvcl 19588 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 + 1) ∈ ℚ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
2926, 28syldan 594 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
30 nn0z 11993 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3130ad2antrl 727 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℤ)
32 zq 12342 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℚ)
3331, 32syl 17 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℚ)
3417, 27abvcl 19588 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
3533, 34syldan 594 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ∈ ℝ)
36 peano2re 10802 . . . . . . . 8 ((𝐹𝑛) ∈ ℝ → ((𝐹𝑛) + 1) ∈ ℝ)
3735, 36syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ∈ ℝ)
3831zred 12075 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝑛 ∈ ℝ)
39 peano2re 10802 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
4038, 39syl 17 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝑛 + 1) ∈ ℝ)
41 simpl 486 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 𝐹𝐴)
42 1z 12000 . . . . . . . . . 10 1 ∈ ℤ
43 zq 12342 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
4442, 43mp1i 13 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℚ)
45 qex 12348 . . . . . . . . . . 11 ℚ ∈ V
46 cnfldadd 20096 . . . . . . . . . . . 12 + = (+g‘ℂfld)
4718, 46ressplusg 16604 . . . . . . . . . . 11 (ℚ ∈ V → + = (+g𝑄))
4845, 47ax-mp 5 . . . . . . . . . 10 + = (+g𝑄)
4917, 27, 48abvtri 19594 . . . . . . . . 9 ((𝐹𝐴𝑛 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
5041, 33, 44, 49syl3anc 1368 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + (𝐹‘1)))
51 ax-1ne0 10595 . . . . . . . . . . 11 1 ≠ 0
5218qrng1 26206 . . . . . . . . . . . 12 1 = (1r𝑄)
5317, 52, 19abv1z 19596 . . . . . . . . . . 11 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
5451, 53mpan2 690 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘1) = 1)
5554adantr 484 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘1) = 1)
5655oveq2d 7151 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + (𝐹‘1)) = ((𝐹𝑛) + 1))
5750, 56breqtrd 5056 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ ((𝐹𝑛) + 1))
58 1red 10631 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → 1 ∈ ℝ)
59 simprr 772 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹𝑛) ≤ 𝑛)
6035, 38, 58, 59leadd1dd 11243 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → ((𝐹𝑛) + 1) ≤ (𝑛 + 1))
6129, 37, 40, 57, 60letrd 10786 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≤ 𝑛)) → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))
6261expr 460 . . . . 5 ((𝐹𝐴𝑛 ∈ ℕ0) → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1)))
6362expcom 417 . . . 4 (𝑛 ∈ ℕ0 → (𝐹𝐴 → ((𝐹𝑛) ≤ 𝑛 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
6463a2d 29 . . 3 (𝑛 ∈ ℕ0 → ((𝐹𝐴 → (𝐹𝑛) ≤ 𝑛) → (𝐹𝐴 → (𝐹‘(𝑛 + 1)) ≤ (𝑛 + 1))))
654, 8, 12, 16, 22, 64nn0ind 12065 . 2 (𝑁 ∈ ℕ0 → (𝐹𝐴 → (𝐹𝑁) ≤ 𝑁))
6665impcom 411 1 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cn 11625  0cn0 11885  cz 11969  cq 12336  s cress 16476  +gcplusg 16557  AbsValcabv 19580  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-ico 12732  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-abv 19581  df-cnfld 20092
This theorem is referenced by:  ostth2lem2  26218  ostth2  26221
  Copyright terms: Public domain W3C validator