Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1534
∈ wcel 2099 ‘cfv 6542 Basecbs 17171
0gc0g 17412
Grpcgrp 18881 Ringcrg 20164 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-riota 7370 df-ov 7417 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-ring 20166 |
This theorem is referenced by: dvdsr01
20299 dvdsr02
20300 irredn0
20351 isnzr2
20446 isnzr2hash
20447 ringelnzr
20449 0ring
20452 01eq0ring
20456 01eq0ringOLD
20457 zrrnghm
20462 cntzsubr
20534 ringen1zr
20655 imadrhmcl
20674 abv0
20700 abvtrivd
20709 lmod0cl
20760 lmod0vs
20767 lmodvs0
20768 lpi0
21205 frlmphllem
21701 frlmphl
21702 uvcvvcl2
21709 uvcff
21712 psr1cl
21891 mvrf
21914 mplmon
21960 mplmonmul
21961 mplcoe1
21962 evlslem3
22013 coe1z
22169 coe1tmfv2
22181 ply1scl0OLD
22197 ply1scln0
22198 ply1chr
22212 gsummoncoe1
22214 mamumat1cl
22328 dmatsubcl
22387 dmatmulcl
22389 scmatscmiddistr
22397 marrepcl
22453 mdetr0
22494 mdetunilem8
22508 mdetunilem9
22509 maducoeval2
22529 maduf
22530 madutpos
22531 madugsum
22532 marep01ma
22549 smadiadetlem4
22558 smadiadetglem2
22561 1elcpmat
22604 m2cpminv0
22650 decpmataa0
22657 monmatcollpw
22668 pmatcollpw3fi1lem1
22675 pmatcollpw3fi1lem2
22676 chfacfisf
22743 cphsubrglem
25092 mdegaddle
25997 ply1divex
26059 facth1
26088 fta1blem
26092 abvcxp
27535 rhmpreimaidl
33070 elrspunidl
33079 elrspunsn
33080 rhmimaidl
33083 qsidomlem2
33105 ply1degltel
33197 ply1degleel
33198 ply1degltlss
33199 gsummoncoe1fzo
33200 ply1gsumz
33201 r1p0
33208 r1pid2
33211 r1pquslmic
33213 lfl0sc
38491 lflsc0N
38492 baerlem3lem1
41117 ricdrng1
41686 rhmmpl
41708 evl0
41712 evlsbagval
41721 selvvvval
41740 frlmpwfi
42444 mnringmulrcld
43588 zlidlring
47219 cznrng
47246 linc0scn0
47414 linc1
47416 |