Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version |
Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
Ref | Expression |
---|---|
ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
ring0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 19797 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 18616 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 Basecbs 16921 0gc0g 17159 Grpcgrp 18586 Ringcrg 19792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-riota 7241 df-ov 7287 df-0g 17161 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 df-ring 19794 |
This theorem is referenced by: dvdsr01 19906 dvdsr02 19907 irredn0 19954 cntzsubr 20066 abv0 20100 abvtrivd 20109 lmod0cl 20158 lmod0vs 20165 lmodvs0 20166 lpi0 20527 isnzr2 20543 isnzr2hash 20544 ringelnzr 20546 0ring 20550 01eq0ring 20552 ringen1zr 20557 frlmphllem 20996 frlmphl 20997 uvcvvcl2 21004 uvcff 21007 psr1cl 21180 mvrf 21202 mplmon 21245 mplmonmul 21246 mplcoe1 21247 evlslem3 21299 coe1z 21443 coe1tmfv2 21455 ply1scl0 21470 ply1scln0 21471 gsummoncoe1 21484 mamumat1cl 21597 dmatsubcl 21656 dmatmulcl 21658 scmatscmiddistr 21666 marrepcl 21722 mdetr0 21763 mdetunilem8 21777 mdetunilem9 21778 maducoeval2 21798 maduf 21799 madutpos 21800 madugsum 21801 marep01ma 21818 smadiadetlem4 21827 smadiadetglem2 21830 1elcpmat 21873 m2cpminv0 21919 decpmataa0 21926 monmatcollpw 21937 pmatcollpw3fi1lem1 21944 pmatcollpw3fi1lem2 21945 chfacfisf 22012 cphsubrglem 24350 mdegaddle 25248 ply1divex 25310 facth1 25338 fta1blem 25342 abvcxp 26772 rhmpreimaidl 31612 elrspunidl 31615 rhmimaidl 31618 qsidomlem2 31638 ply1chr 31678 lfl0sc 37103 lflsc0N 37104 baerlem3lem1 39728 selvval2lem4 40235 evl0 40278 evlsbagval 40282 mhphf 40292 frlmpwfi 40930 mnringmulrcld 41853 zrrnghm 45486 zlidlring 45497 cznrng 45524 linc0scn0 45775 linc1 45777 |
Copyright terms: Public domain | W3C validator |