Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version |
Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
Ref | Expression |
---|---|
ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
ring0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 19703 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 18522 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ring 19700 |
This theorem is referenced by: dvdsr01 19812 dvdsr02 19813 irredn0 19860 cntzsubr 19972 abv0 20006 abvtrivd 20015 lmod0cl 20064 lmod0vs 20071 lmodvs0 20072 lpi0 20431 isnzr2 20447 isnzr2hash 20448 ringelnzr 20450 0ring 20454 01eq0ring 20456 ringen1zr 20461 frlmphllem 20897 frlmphl 20898 uvcvvcl2 20905 uvcff 20908 psr1cl 21081 mvrf 21103 mplmon 21146 mplmonmul 21147 mplcoe1 21148 evlslem3 21200 coe1z 21344 coe1tmfv2 21356 ply1scl0 21371 ply1scln0 21372 gsummoncoe1 21385 mamumat1cl 21496 dmatsubcl 21555 dmatmulcl 21557 scmatscmiddistr 21565 marrepcl 21621 mdetr0 21662 mdetunilem8 21676 mdetunilem9 21677 maducoeval2 21697 maduf 21698 madutpos 21699 madugsum 21700 marep01ma 21717 smadiadetlem4 21726 smadiadetglem2 21729 1elcpmat 21772 m2cpminv0 21818 decpmataa0 21825 monmatcollpw 21836 pmatcollpw3fi1lem1 21843 pmatcollpw3fi1lem2 21844 chfacfisf 21911 cphsubrglem 24246 mdegaddle 25144 ply1divex 25206 facth1 25234 fta1blem 25238 abvcxp 26668 rhmpreimaidl 31505 elrspunidl 31508 rhmimaidl 31511 qsidomlem2 31531 ply1chr 31571 lfl0sc 37023 lflsc0N 37024 baerlem3lem1 39648 selvval2lem4 40154 evlsbagval 40198 mhphf 40208 frlmpwfi 40839 mnringmulrcld 41735 zrrnghm 45363 zlidlring 45374 cznrng 45401 linc0scn0 45652 linc1 45654 |
Copyright terms: Public domain | W3C validator |