| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| Ref | Expression |
|---|---|
| ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20147 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18897 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ring 20144 |
| This theorem is referenced by: dvdsr01 20280 dvdsr02 20281 irredn0 20332 isnzr2 20427 isnzr2hash 20428 ringelnzr 20432 0ring 20435 01eq0ring 20439 01eq0ringOLD 20440 zrrnghm 20445 cntzsubr 20515 domneq0r 20633 ringen1zr 20687 imadrhmcl 20706 abv0 20732 abvtrivd 20741 lmod0cl 20794 lmod0vs 20801 lmodvs0 20802 rhmpreimaidl 21187 lpi0 21236 frlmphllem 21689 frlmphl 21690 uvcvvcl2 21697 uvcff 21700 psr1cl 21870 mvrf 21894 mplmon 21942 mplmonmul 21943 mplcoe1 21944 evlslem3 21987 coe1z 22149 coe1tmfv2 22161 ply1scl0OLD 22177 ply1scln0 22178 ply1chr 22193 gsummoncoe1 22195 rhmmpl 22270 rhmply1vr1 22274 mamumat1cl 22326 dmatsubcl 22385 dmatmulcl 22387 scmatscmiddistr 22395 marrepcl 22451 mdetr0 22492 mdetunilem8 22506 mdetunilem9 22507 maducoeval2 22527 maduf 22528 madutpos 22529 madugsum 22530 marep01ma 22547 smadiadetlem4 22556 smadiadetglem2 22559 1elcpmat 22602 m2cpminv0 22648 decpmataa0 22655 monmatcollpw 22666 pmatcollpw3fi1lem1 22673 pmatcollpw3fi1lem2 22674 chfacfisf 22741 cphsubrglem 25077 mdegaddle 25979 ply1divex 26042 r1pid2 26067 facth1 26072 fta1blem 26076 abvcxp 27526 rloccring 33221 elrspunidl 33399 elrspunsn 33400 rhmimaidl 33403 qsidomlem2 33424 ply1degltel 33560 ply1degleel 33561 ply1degltlss 33562 gsummoncoe1fzo 33563 ply1gsumz 33564 r1p0 33571 r1pid2OLD 33574 r1pquslmic 33576 zrhcntr 33969 lfl0sc 39075 lflsc0N 39076 baerlem3lem1 41701 ricdrng1 42516 rhmpsr 42540 evl0 42545 evlsbagval 42554 selvvvval 42573 frlmpwfi 43087 mnringmulrcld 44217 zlidlring 48222 cznrng 48249 linc0scn0 48412 linc1 48414 |
| Copyright terms: Public domain | W3C validator |