| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| Ref | Expression |
|---|---|
| ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20198 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18948 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Grpcgrp 18916 Ringcrg 20193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ring 20195 |
| This theorem is referenced by: dvdsr01 20331 dvdsr02 20332 irredn0 20383 isnzr2 20478 isnzr2hash 20479 ringelnzr 20483 0ring 20486 01eq0ring 20490 01eq0ringOLD 20491 zrrnghm 20496 cntzsubr 20566 domneq0r 20684 ringen1zr 20738 imadrhmcl 20757 abv0 20783 abvtrivd 20792 lmod0cl 20845 lmod0vs 20852 lmodvs0 20853 rhmpreimaidl 21238 lpi0 21287 frlmphllem 21740 frlmphl 21741 uvcvvcl2 21748 uvcff 21751 psr1cl 21921 mvrf 21945 mplmon 21993 mplmonmul 21994 mplcoe1 21995 evlslem3 22038 coe1z 22200 coe1tmfv2 22212 ply1scl0OLD 22228 ply1scln0 22229 ply1chr 22244 gsummoncoe1 22246 rhmmpl 22321 rhmply1vr1 22325 mamumat1cl 22377 dmatsubcl 22436 dmatmulcl 22438 scmatscmiddistr 22446 marrepcl 22502 mdetr0 22543 mdetunilem8 22557 mdetunilem9 22558 maducoeval2 22578 maduf 22579 madutpos 22580 madugsum 22581 marep01ma 22598 smadiadetlem4 22607 smadiadetglem2 22610 1elcpmat 22653 m2cpminv0 22699 decpmataa0 22706 monmatcollpw 22717 pmatcollpw3fi1lem1 22724 pmatcollpw3fi1lem2 22725 chfacfisf 22792 cphsubrglem 25129 mdegaddle 26031 ply1divex 26094 r1pid2 26119 facth1 26124 fta1blem 26128 abvcxp 27578 rloccring 33265 elrspunidl 33443 elrspunsn 33444 rhmimaidl 33447 qsidomlem2 33468 ply1degltel 33604 ply1degleel 33605 ply1degltlss 33606 gsummoncoe1fzo 33607 ply1gsumz 33608 r1p0 33615 r1pid2OLD 33618 r1pquslmic 33620 zrhcntr 34010 lfl0sc 39100 lflsc0N 39101 baerlem3lem1 41726 ricdrng1 42551 rhmpsr 42575 evl0 42580 evlsbagval 42589 selvvvval 42608 frlmpwfi 43122 mnringmulrcld 44252 zlidlring 48209 cznrng 48236 linc0scn0 48399 linc1 48401 |
| Copyright terms: Public domain | W3C validator |