![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version |
Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
Ref | Expression |
---|---|
ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
ring0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 20255 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 18995 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 Basecbs 17244 0gc0g 17485 Grpcgrp 18963 Ringcrg 20250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-riota 7387 df-ov 7433 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-ring 20252 |
This theorem is referenced by: dvdsr01 20387 dvdsr02 20388 irredn0 20439 isnzr2 20534 isnzr2hash 20535 ringelnzr 20539 0ring 20542 01eq0ring 20546 01eq0ringOLD 20547 zrrnghm 20552 cntzsubr 20622 domneq0r 20740 ringen1zr 20795 imadrhmcl 20814 abv0 20840 abvtrivd 20849 lmod0cl 20902 lmod0vs 20909 lmodvs0 20910 rhmpreimaidl 21304 lpi0 21353 frlmphllem 21817 frlmphl 21818 uvcvvcl2 21825 uvcff 21828 psr1cl 21998 mvrf 22022 mplmon 22070 mplmonmul 22071 mplcoe1 22072 evlslem3 22121 coe1z 22281 coe1tmfv2 22293 ply1scl0OLD 22309 ply1scln0 22310 ply1chr 22325 gsummoncoe1 22327 rhmmpl 22402 rhmply1vr1 22406 mamumat1cl 22460 dmatsubcl 22519 dmatmulcl 22521 scmatscmiddistr 22529 marrepcl 22585 mdetr0 22626 mdetunilem8 22640 mdetunilem9 22641 maducoeval2 22661 maduf 22662 madutpos 22663 madugsum 22664 marep01ma 22681 smadiadetlem4 22690 smadiadetglem2 22693 1elcpmat 22736 m2cpminv0 22782 decpmataa0 22789 monmatcollpw 22800 pmatcollpw3fi1lem1 22807 pmatcollpw3fi1lem2 22808 chfacfisf 22875 cphsubrglem 25224 mdegaddle 26127 ply1divex 26190 r1pid2 26215 facth1 26220 fta1blem 26224 abvcxp 27673 rloccring 33256 elrspunidl 33435 elrspunsn 33436 rhmimaidl 33439 qsidomlem2 33460 ply1degltel 33594 ply1degleel 33595 ply1degltlss 33596 gsummoncoe1fzo 33597 ply1gsumz 33598 r1p0 33605 r1pid2OLD 33608 r1pquslmic 33610 zrhcntr 33941 lfl0sc 39063 lflsc0N 39064 baerlem3lem1 41689 ricdrng1 42514 rhmpsr 42538 evl0 42543 evlsbagval 42552 selvvvval 42571 frlmpwfi 43086 mnringmulrcld 44223 zlidlring 48077 cznrng 48104 linc0scn0 48268 linc1 48270 |
Copyright terms: Public domain | W3C validator |