| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| Ref | Expression |
|---|---|
| ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20149 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18870 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 Basecbs 17112 0gc0g 17335 Grpcgrp 18838 Ringcrg 20144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-riota 7298 df-ov 7344 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-ring 20146 |
| This theorem is referenced by: dvdsr01 20282 dvdsr02 20283 irredn0 20334 isnzr2 20426 isnzr2hash 20427 ringelnzr 20431 0ring 20434 01eq0ring 20438 01eq0ringOLD 20439 zrrnghm 20444 cntzsubr 20514 domneq0r 20632 ringen1zr 20686 imadrhmcl 20705 abv0 20731 abvtrivd 20740 lmod0cl 20814 lmod0vs 20821 lmodvs0 20822 rhmpreimaidl 21207 lpi0 21256 frlmphllem 21710 frlmphl 21711 uvcvvcl2 21718 uvcff 21721 psr1cl 21891 mvrf 21915 mplmon 21963 mplmonmul 21964 mplcoe1 21965 evlslem3 22008 coe1z 22170 coe1tmfv2 22182 ply1scl0OLD 22198 ply1scln0 22199 ply1chr 22214 gsummoncoe1 22216 rhmmpl 22291 rhmply1vr1 22295 mamumat1cl 22347 dmatsubcl 22406 dmatmulcl 22408 scmatscmiddistr 22416 marrepcl 22472 mdetr0 22513 mdetunilem8 22527 mdetunilem9 22528 maducoeval2 22548 maduf 22549 madutpos 22550 madugsum 22551 marep01ma 22568 smadiadetlem4 22577 smadiadetglem2 22580 1elcpmat 22623 m2cpminv0 22669 decpmataa0 22676 monmatcollpw 22687 pmatcollpw3fi1lem1 22694 pmatcollpw3fi1lem2 22695 chfacfisf 22762 cphsubrglem 25097 mdegaddle 25999 ply1divex 26062 r1pid2 26087 facth1 26092 fta1blem 26096 abvcxp 27546 rloccring 33227 elrspunidl 33383 elrspunsn 33384 rhmimaidl 33387 qsidomlem2 33408 ply1degltel 33545 ply1degleel 33546 ply1degltlss 33547 gsummoncoe1fzo 33548 ply1gsumz 33549 r1p0 33556 r1pid2OLD 33559 r1pquslmic 33561 zrhcntr 33982 lfl0sc 39100 lflsc0N 39101 baerlem3lem1 41725 ricdrng1 42540 rhmpsr 42564 evl0 42569 evlsbagval 42578 selvvvval 42597 frlmpwfi 43110 mnringmulrcld 44240 zlidlring 48244 cznrng 48271 linc0scn0 48434 linc1 48436 |
| Copyright terms: Public domain | W3C validator |