| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| Ref | Expression |
|---|---|
| ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20153 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18903 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 Basecbs 17185 0gc0g 17408 Grpcgrp 18871 Ringcrg 20148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-ring 20150 |
| This theorem is referenced by: dvdsr01 20286 dvdsr02 20287 irredn0 20338 isnzr2 20433 isnzr2hash 20434 ringelnzr 20438 0ring 20441 01eq0ring 20445 01eq0ringOLD 20446 zrrnghm 20451 cntzsubr 20521 domneq0r 20639 ringen1zr 20693 imadrhmcl 20712 abv0 20738 abvtrivd 20747 lmod0cl 20800 lmod0vs 20807 lmodvs0 20808 rhmpreimaidl 21193 lpi0 21242 frlmphllem 21695 frlmphl 21696 uvcvvcl2 21703 uvcff 21706 psr1cl 21876 mvrf 21900 mplmon 21948 mplmonmul 21949 mplcoe1 21950 evlslem3 21993 coe1z 22155 coe1tmfv2 22167 ply1scl0OLD 22183 ply1scln0 22184 ply1chr 22199 gsummoncoe1 22201 rhmmpl 22276 rhmply1vr1 22280 mamumat1cl 22332 dmatsubcl 22391 dmatmulcl 22393 scmatscmiddistr 22401 marrepcl 22457 mdetr0 22498 mdetunilem8 22512 mdetunilem9 22513 maducoeval2 22533 maduf 22534 madutpos 22535 madugsum 22536 marep01ma 22553 smadiadetlem4 22562 smadiadetglem2 22565 1elcpmat 22608 m2cpminv0 22654 decpmataa0 22661 monmatcollpw 22672 pmatcollpw3fi1lem1 22679 pmatcollpw3fi1lem2 22680 chfacfisf 22747 cphsubrglem 25083 mdegaddle 25985 ply1divex 26048 r1pid2 26073 facth1 26078 fta1blem 26082 abvcxp 27532 rloccring 33227 elrspunidl 33405 elrspunsn 33406 rhmimaidl 33409 qsidomlem2 33430 ply1degltel 33566 ply1degleel 33567 ply1degltlss 33568 gsummoncoe1fzo 33569 ply1gsumz 33570 r1p0 33577 r1pid2OLD 33580 r1pquslmic 33582 zrhcntr 33975 lfl0sc 39070 lflsc0N 39071 baerlem3lem1 41696 ricdrng1 42509 rhmpsr 42533 evl0 42538 evlsbagval 42547 selvvvval 42566 frlmpwfi 43080 mnringmulrcld 44210 zlidlring 48212 cznrng 48239 linc0scn0 48402 linc1 48404 |
| Copyright terms: Public domain | W3C validator |