Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 ‘cfv 6544 Basecbs 17144
0gc0g 17385
Grpcgrp 18819 Ringcrg 20056 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-ring 20058 |
This theorem is referenced by: dvdsr01
20185 dvdsr02
20186 irredn0
20237 isnzr2
20297 isnzr2hash
20298 ringelnzr
20300 0ring
20303 01eq0ring
20305 01eq0ringOLD
20306 cntzsubr
20353 ringen1zr
20399 imadrhmcl
20413 abv0
20439 abvtrivd
20448 lmod0cl
20498 lmod0vs
20505 lmodvs0
20506 lpi0
20885 frlmphllem
21335 frlmphl
21336 uvcvvcl2
21343 uvcff
21346 psr1cl
21522 mvrf
21544 mplmon
21590 mplmonmul
21591 mplcoe1
21592 evlslem3
21643 coe1z
21785 coe1tmfv2
21797 ply1scl0OLD
21813 ply1scln0
21814 gsummoncoe1
21828 mamumat1cl
21941 dmatsubcl
22000 dmatmulcl
22002 scmatscmiddistr
22010 marrepcl
22066 mdetr0
22107 mdetunilem8
22121 mdetunilem9
22122 maducoeval2
22142 maduf
22143 madutpos
22144 madugsum
22145 marep01ma
22162 smadiadetlem4
22171 smadiadetglem2
22174 1elcpmat
22217 m2cpminv0
22263 decpmataa0
22270 monmatcollpw
22281 pmatcollpw3fi1lem1
22288 pmatcollpw3fi1lem2
22289 chfacfisf
22356 cphsubrglem
24694 mdegaddle
25592 ply1divex
25654 facth1
25682 fta1blem
25686 abvcxp
27118 rhmpreimaidl
32537 elrspunidl
32546 elrspunsn
32547 rhmimaidl
32550 qsidomlem2
32572 ply1chr
32661 ply1degltel
32666 ply1degltlss
32667 gsummoncoe1fzo
32668 ply1gsumz
32669 lfl0sc
37952 lflsc0N
37953 baerlem3lem1
40578 ricdrng1
41102 rhmmpl
41125 evl0
41129 evlsbagval
41138 selvvvval
41157 frlmpwfi
41840 mnringmulrcld
42987 zrrnghm
46716 zlidlring
46826 cznrng
46853 linc0scn0
47104 linc1
47106 |