![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version |
Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
Ref | Expression |
---|---|
ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
ring0cl.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 20265 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 19005 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 Ringcrg 20260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ring 20262 |
This theorem is referenced by: dvdsr01 20397 dvdsr02 20398 irredn0 20449 isnzr2 20544 isnzr2hash 20545 ringelnzr 20549 0ring 20552 01eq0ring 20556 01eq0ringOLD 20557 zrrnghm 20562 cntzsubr 20634 domneq0r 20746 ringen1zr 20801 imadrhmcl 20820 abv0 20846 abvtrivd 20855 lmod0cl 20908 lmod0vs 20915 lmodvs0 20916 rhmpreimaidl 21310 lpi0 21359 frlmphllem 21823 frlmphl 21824 uvcvvcl2 21831 uvcff 21834 psr1cl 22004 mvrf 22028 mplmon 22076 mplmonmul 22077 mplcoe1 22078 evlslem3 22127 coe1z 22287 coe1tmfv2 22299 ply1scl0OLD 22315 ply1scln0 22316 ply1chr 22331 gsummoncoe1 22333 rhmmpl 22408 rhmply1vr1 22412 mamumat1cl 22466 dmatsubcl 22525 dmatmulcl 22527 scmatscmiddistr 22535 marrepcl 22591 mdetr0 22632 mdetunilem8 22646 mdetunilem9 22647 maducoeval2 22667 maduf 22668 madutpos 22669 madugsum 22670 marep01ma 22687 smadiadetlem4 22696 smadiadetglem2 22699 1elcpmat 22742 m2cpminv0 22788 decpmataa0 22795 monmatcollpw 22806 pmatcollpw3fi1lem1 22813 pmatcollpw3fi1lem2 22814 chfacfisf 22881 cphsubrglem 25230 mdegaddle 26133 ply1divex 26196 r1pid2 26221 facth1 26226 fta1blem 26230 abvcxp 27677 rloccring 33242 elrspunidl 33421 elrspunsn 33422 rhmimaidl 33425 qsidomlem2 33446 ply1degltel 33580 ply1degleel 33581 ply1degltlss 33582 gsummoncoe1fzo 33583 ply1gsumz 33584 r1p0 33591 r1pid2OLD 33594 r1pquslmic 33596 lfl0sc 39038 lflsc0N 39039 baerlem3lem1 41664 ricdrng1 42483 rhmpsr 42507 evl0 42512 evlsbagval 42521 selvvvval 42540 frlmpwfi 43055 mnringmulrcld 44197 zlidlring 47957 cznrng 47984 linc0scn0 48152 linc1 48154 |
Copyright terms: Public domain | W3C validator |