| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| Ref | Expression |
|---|---|
| ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20141 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18862 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Basecbs 17138 0gc0g 17361 Grpcgrp 18830 Ringcrg 20136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-ring 20138 |
| This theorem is referenced by: dvdsr01 20274 dvdsr02 20275 irredn0 20326 isnzr2 20421 isnzr2hash 20422 ringelnzr 20426 0ring 20429 01eq0ring 20433 01eq0ringOLD 20434 zrrnghm 20439 cntzsubr 20509 domneq0r 20627 ringen1zr 20681 imadrhmcl 20700 abv0 20726 abvtrivd 20735 lmod0cl 20809 lmod0vs 20816 lmodvs0 20817 rhmpreimaidl 21202 lpi0 21251 frlmphllem 21705 frlmphl 21706 uvcvvcl2 21713 uvcff 21716 psr1cl 21886 mvrf 21910 mplmon 21958 mplmonmul 21959 mplcoe1 21960 evlslem3 22003 coe1z 22165 coe1tmfv2 22177 ply1scl0OLD 22193 ply1scln0 22194 ply1chr 22209 gsummoncoe1 22211 rhmmpl 22286 rhmply1vr1 22290 mamumat1cl 22342 dmatsubcl 22401 dmatmulcl 22403 scmatscmiddistr 22411 marrepcl 22467 mdetr0 22508 mdetunilem8 22522 mdetunilem9 22523 maducoeval2 22543 maduf 22544 madutpos 22545 madugsum 22546 marep01ma 22563 smadiadetlem4 22572 smadiadetglem2 22575 1elcpmat 22618 m2cpminv0 22664 decpmataa0 22671 monmatcollpw 22682 pmatcollpw3fi1lem1 22689 pmatcollpw3fi1lem2 22690 chfacfisf 22757 cphsubrglem 25093 mdegaddle 25995 ply1divex 26058 r1pid2 26083 facth1 26088 fta1blem 26092 abvcxp 27542 rloccring 33220 elrspunidl 33375 elrspunsn 33376 rhmimaidl 33379 qsidomlem2 33400 ply1degltel 33536 ply1degleel 33537 ply1degltlss 33538 gsummoncoe1fzo 33539 ply1gsumz 33540 r1p0 33547 r1pid2OLD 33550 r1pquslmic 33552 zrhcntr 33945 lfl0sc 39060 lflsc0N 39061 baerlem3lem1 41686 ricdrng1 42501 rhmpsr 42525 evl0 42530 evlsbagval 42539 selvvvval 42558 frlmpwfi 43071 mnringmulrcld 44201 zlidlring 48206 cznrng 48233 linc0scn0 48396 linc1 48398 |
| Copyright terms: Public domain | W3C validator |