| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| Ref | Expression |
|---|---|
| ring0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring0cl | ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 20162 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | ring0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ring0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18884 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 Basecbs 17126 0gc0g 17349 Grpcgrp 18852 Ringcrg 20157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-riota 7309 df-ov 7355 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-ring 20159 |
| This theorem is referenced by: dvdsr01 20295 dvdsr02 20296 irredn0 20347 isnzr2 20439 isnzr2hash 20440 ringelnzr 20444 0ring 20447 01eq0ring 20451 01eq0ringOLD 20452 zrrnghm 20457 cntzsubr 20527 domneq0r 20645 ringen1zr 20699 imadrhmcl 20718 abv0 20744 abvtrivd 20753 lmod0cl 20827 lmod0vs 20834 lmodvs0 20835 rhmpreimaidl 21220 lpi0 21269 frlmphllem 21723 frlmphl 21724 uvcvvcl2 21731 uvcff 21734 psr1cl 21904 mvrf 21928 mplmon 21976 mplmonmul 21977 mplcoe1 21978 evlslem3 22021 coe1z 22183 coe1tmfv2 22195 ply1scl0OLD 22211 ply1scln0 22212 ply1chr 22227 gsummoncoe1 22229 rhmmpl 22304 rhmply1vr1 22308 mamumat1cl 22360 dmatsubcl 22419 dmatmulcl 22421 scmatscmiddistr 22429 marrepcl 22485 mdetr0 22526 mdetunilem8 22540 mdetunilem9 22541 maducoeval2 22561 maduf 22562 madutpos 22563 madugsum 22564 marep01ma 22581 smadiadetlem4 22590 smadiadetglem2 22593 1elcpmat 22636 m2cpminv0 22682 decpmataa0 22689 monmatcollpw 22700 pmatcollpw3fi1lem1 22707 pmatcollpw3fi1lem2 22708 chfacfisf 22775 cphsubrglem 25110 mdegaddle 26012 ply1divex 26075 r1pid2 26100 facth1 26105 fta1blem 26109 abvcxp 27559 rloccring 33244 elrspunidl 33400 elrspunsn 33401 rhmimaidl 33404 qsidomlem2 33425 ply1degltel 33562 ply1degleel 33563 ply1degltlss 33564 gsummoncoe1fzo 33565 ply1gsumz 33566 r1p0 33573 r1pid2OLD 33576 r1pquslmic 33578 zrhcntr 33999 lfl0sc 39187 lflsc0N 39188 baerlem3lem1 41812 ricdrng1 42627 rhmpsr 42651 evl0 42656 evlsbagval 42665 selvvvval 42684 frlmpwfi 43196 mnringmulrcld 44326 zlidlring 48339 cznrng 48366 linc0scn0 48529 linc1 48531 |
| Copyright terms: Public domain | W3C validator |