Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1533
∈ wcel 2098 ‘cfv 6547 Basecbs 17179
0gc0g 17420
Grpcgrp 18894 Ringcrg 20177 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-riota 7373 df-ov 7420 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-ring 20179 |
This theorem is referenced by: dvdsr01
20314 dvdsr02
20315 irredn0
20366 isnzr2
20461 isnzr2hash
20462 ringelnzr
20464 0ring
20467 01eq0ring
20471 01eq0ringOLD
20472 zrrnghm
20477 cntzsubr
20549 ringen1zr
20670 imadrhmcl
20689 abv0
20715 abvtrivd
20724 lmod0cl
20775 lmod0vs
20782 lmodvs0
20783 lpi0
21220 frlmphllem
21718 frlmphl
21719 uvcvvcl2
21726 uvcff
21729 psr1cl
21910 mvrf
21934 mplmon
21980 mplmonmul
21981 mplcoe1
21982 evlslem3
22033 coe1z
22191 coe1tmfv2
22203 ply1scl0OLD
22219 ply1scln0
22220 ply1chr
22234 gsummoncoe1
22236 rhmmpl
22313 rhmply1vr1
22317 mamumat1cl
22371 dmatsubcl
22430 dmatmulcl
22432 scmatscmiddistr
22440 marrepcl
22496 mdetr0
22537 mdetunilem8
22551 mdetunilem9
22552 maducoeval2
22572 maduf
22573 madutpos
22574 madugsum
22575 marep01ma
22592 smadiadetlem4
22601 smadiadetglem2
22604 1elcpmat
22647 m2cpminv0
22693 decpmataa0
22700 monmatcollpw
22711 pmatcollpw3fi1lem1
22718 pmatcollpw3fi1lem2
22719 chfacfisf
22786 cphsubrglem
25135 mdegaddle
26040 ply1divex
26102 facth1
26131 fta1blem
26135 abvcxp
27578 rloccring
33024 rhmpreimaidl
33195 elrspunidl
33206 elrspunsn
33207 rhmimaidl
33210 qsidomlem2
33231 ply1degltel
33335 ply1degleel
33336 ply1degltlss
33337 gsummoncoe1fzo
33338 ply1gsumz
33339 r1p0
33346 r1pid2
33349 r1pquslmic
33351 lfl0sc
38623 lflsc0N
38624 baerlem3lem1
41249 ricdrng1
41832 rhmpsr
41850 evl0
41855 evlsbagval
41864 selvvvval
41883 frlmpwfi
42587 mnringmulrcld
43730 zlidlring
47408 cznrng
47435 linc0scn0
47603 linc1
47605 |