MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem2 Structured version   Visualization version   GIF version

Theorem ostth2lem2 27592
Description: Lemma for ostth2 27595. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
Assertion
Ref Expression
ostth2lem2 ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑋   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑋(𝑞)   𝑌(𝑥,𝑞)

Proof of Theorem ostth2lem2
Dummy variables 𝑘 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7363 . . . . . . . . 9 (𝑥 = 0 → (𝑀𝑥) = (𝑀↑0))
21oveq1d 7370 . . . . . . . 8 (𝑥 = 0 → ((𝑀𝑥) − 1) = ((𝑀↑0) − 1))
32oveq2d 7371 . . . . . . 7 (𝑥 = 0 → (0...((𝑀𝑥) − 1)) = (0...((𝑀↑0) − 1)))
4 oveq2 7363 . . . . . . . . 9 (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0))
5 oveq2 7363 . . . . . . . . 9 (𝑥 = 0 → (𝑇𝑥) = (𝑇↑0))
64, 5oveq12d 7373 . . . . . . . 8 (𝑥 = 0 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 0) · (𝑇↑0)))
76breq2d 5107 . . . . . . 7 (𝑥 = 0 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
83, 7raleqbidv 3313 . . . . . 6 (𝑥 = 0 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
98imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))))
10 oveq2 7363 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑀𝑥) = (𝑀𝑛))
1110oveq1d 7370 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑀𝑥) − 1) = ((𝑀𝑛) − 1))
1211oveq2d 7371 . . . . . . 7 (𝑥 = 𝑛 → (0...((𝑀𝑥) − 1)) = (0...((𝑀𝑛) − 1)))
13 oveq2 7363 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑀 · 𝑥) = (𝑀 · 𝑛))
14 oveq2 7363 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑇𝑥) = (𝑇𝑛))
1513, 14oveq12d 7373 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 𝑛) · (𝑇𝑛)))
1615breq2d 5107 . . . . . . 7 (𝑥 = 𝑛 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
1712, 16raleqbidv 3313 . . . . . 6 (𝑥 = 𝑛 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
1817imbi2d 340 . . . . 5 (𝑥 = 𝑛 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))))
19 oveq2 7363 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑀𝑥) = (𝑀↑(𝑛 + 1)))
2019oveq1d 7370 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑀𝑥) − 1) = ((𝑀↑(𝑛 + 1)) − 1))
2120oveq2d 7371 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...((𝑀𝑥) − 1)) = (0...((𝑀↑(𝑛 + 1)) − 1)))
22 oveq2 7363 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑛 + 1)))
23 oveq2 7363 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑇𝑥) = (𝑇↑(𝑛 + 1)))
2422, 23oveq12d 7373 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
2524breq2d 5107 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
2621, 25raleqbidv 3313 . . . . . 6 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
2726imbi2d 340 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
28 oveq2 7363 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀𝑥) = (𝑀𝑋))
2928oveq1d 7370 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀𝑥) − 1) = ((𝑀𝑋) − 1))
3029oveq2d 7371 . . . . . . 7 (𝑥 = 𝑋 → (0...((𝑀𝑥) − 1)) = (0...((𝑀𝑋) − 1)))
31 oveq2 7363 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀 · 𝑥) = (𝑀 · 𝑋))
32 oveq2 7363 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑇𝑥) = (𝑇𝑋))
3331, 32oveq12d 7373 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 𝑋) · (𝑇𝑋)))
3433breq2d 5107 . . . . . . 7 (𝑥 = 𝑋 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
3530, 34raleqbidv 3313 . . . . . 6 (𝑥 = 𝑋 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
3635imbi2d 340 . . . . 5 (𝑥 = 𝑋 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))))
37 ostth2.5 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘2))
38 eluz2nn 12792 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4039nncnd 12152 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
4140exp0d 14054 . . . . . . . . . . 11 (𝜑 → (𝑀↑0) = 1)
4241oveq1d 7370 . . . . . . . . . 10 (𝜑 → ((𝑀↑0) − 1) = (1 − 1))
43 1m1e0 12208 . . . . . . . . . 10 (1 − 1) = 0
4442, 43eqtrdi 2784 . . . . . . . . 9 (𝜑 → ((𝑀↑0) − 1) = 0)
4544oveq2d 7371 . . . . . . . 8 (𝜑 → (0...((𝑀↑0) − 1)) = (0...0))
4645eleq2d 2819 . . . . . . 7 (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) ↔ 𝑘 ∈ (0...0)))
47 0le0 12237 . . . . . . . . . 10 0 ≤ 0
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 0)
49 ostth.1 . . . . . . . . . 10 (𝜑𝐹𝐴)
50 qabsabv.a . . . . . . . . . . 11 𝐴 = (AbsVal‘𝑄)
51 qrng.q . . . . . . . . . . . 12 𝑄 = (ℂflds ℚ)
5251qrng0 27579 . . . . . . . . . . 11 0 = (0g𝑄)
5350, 52abv0 20747 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘0) = 0)
5449, 53syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = 0)
5540mul01d 11323 . . . . . . . . . . 11 (𝜑 → (𝑀 · 0) = 0)
5655oveq1d 7370 . . . . . . . . . 10 (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = (0 · (𝑇↑0)))
57 ostth2.7 . . . . . . . . . . . . . 14 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
58 1re 11123 . . . . . . . . . . . . . . 15 1 ∈ ℝ
59 nnq 12866 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
6039, 59syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℚ)
6151qrngbas 27577 . . . . . . . . . . . . . . . . 17 ℚ = (Base‘𝑄)
6250, 61abvcl 20740 . . . . . . . . . . . . . . . 16 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
6349, 60, 62syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑀) ∈ ℝ)
64 ifcl 4522 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
6558, 63, 64sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
6657, 65eqeltrid 2837 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
6766recnd 11151 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
68 0nn0 12407 . . . . . . . . . . . 12 0 ∈ ℕ0
69 expcl 13993 . . . . . . . . . . . 12 ((𝑇 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑇↑0) ∈ ℂ)
7067, 68, 69sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑇↑0) ∈ ℂ)
7170mul02d 11322 . . . . . . . . . 10 (𝜑 → (0 · (𝑇↑0)) = 0)
7256, 71eqtrd 2768 . . . . . . . . 9 (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = 0)
7348, 54, 723brtr4d 5127 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0)))
74 elfz1eq 13442 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝑘 = 0)
7574fveq2d 6835 . . . . . . . . 9 (𝑘 ∈ (0...0) → (𝐹𝑘) = (𝐹‘0))
7675breq1d 5105 . . . . . . . 8 (𝑘 ∈ (0...0) → ((𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)) ↔ (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0))))
7773, 76syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑘 ∈ (0...0) → (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
7846, 77sylbid 240 . . . . . 6 (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) → (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
7978ralrimiv 3124 . . . . 5 (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))
80 fveq2 6831 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
8180breq1d 5105 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ (𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
8281cbvralvw 3211 . . . . . . . 8 (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
8349ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝐹𝐴)
84 elfzelz 13431 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 𝑘 ∈ ℤ)
8584ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℤ)
86 zq 12858 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
8785, 86syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℚ)
8850, 61abvcl 20740 . . . . . . . . . . . 12 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹𝑘) ∈ ℝ)
8983, 87, 88syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ∈ ℝ)
9039ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℕ)
91 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℕ0)
9290, 91nnexpcld 14159 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℕ)
9385, 92zmodcld 13803 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℕ0)
9493nn0zd 12504 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℤ)
95 zq 12858 . . . . . . . . . . . . . 14 ((𝑘 mod (𝑀𝑛)) ∈ ℤ → (𝑘 mod (𝑀𝑛)) ∈ ℚ)
9694, 95syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℚ)
9750, 61abvcl 20740 . . . . . . . . . . . . 13 ((𝐹𝐴 ∧ (𝑘 mod (𝑀𝑛)) ∈ ℚ) → (𝐹‘(𝑘 mod (𝑀𝑛))) ∈ ℝ)
9883, 96, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑘 mod (𝑀𝑛))) ∈ ℝ)
9990, 59syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℚ)
10083, 99, 62syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ∈ ℝ)
101100, 91reexpcld 14077 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ∈ ℝ)
10285zred 12587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℝ)
103102, 92nndivred 12190 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 / (𝑀𝑛)) ∈ ℝ)
104103flcld 13709 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℤ)
105 zq 12858 . . . . . . . . . . . . . . 15 ((⌊‘(𝑘 / (𝑀𝑛))) ∈ ℤ → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ)
106104, 105syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ)
10750, 61abvcl 20740 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℝ)
10883, 106, 107syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℝ)
109101, 108remulcld 11153 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ∈ ℝ)
11098, 109readdcld 11152 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ∈ ℝ)
11190nnred 12151 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℝ)
112 nn0p1nn 12431 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
113112ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℕ)
114113nnred 12151 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℝ)
115111, 114remulcld 11153 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℝ)
11666ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑇 ∈ ℝ)
117 peano2nn0 12432 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
118117ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℕ0)
119116, 118reexpcld 14077 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇↑(𝑛 + 1)) ∈ ℝ)
120115, 119remulcld 11153 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))) ∈ ℝ)
121 nnq 12866 . . . . . . . . . . . . . . 15 ((𝑀𝑛) ∈ ℕ → (𝑀𝑛) ∈ ℚ)
12292, 121syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℚ)
123 qmulcl 12871 . . . . . . . . . . . . . 14 (((𝑀𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ)
124122, 106, 123syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ)
125 qex 12865 . . . . . . . . . . . . . . 15 ℚ ∈ V
126 cnfldadd 21306 . . . . . . . . . . . . . . . 16 + = (+g‘ℂfld)
12751, 126ressplusg 17202 . . . . . . . . . . . . . . 15 (ℚ ∈ V → + = (+g𝑄))
128125, 127ax-mp 5 . . . . . . . . . . . . . 14 + = (+g𝑄)
12950, 61, 128abvtri 20746 . . . . . . . . . . . . 13 ((𝐹𝐴 ∧ (𝑘 mod (𝑀𝑛)) ∈ ℚ ∧ ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))))
13083, 96, 124, 129syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))))
13192nnrpd 12938 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℝ+)
132 modval 13782 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℝ ∧ (𝑀𝑛) ∈ ℝ+) → (𝑘 mod (𝑀𝑛)) = (𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
133102, 131, 132syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) = (𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
134133oveq1d 7370 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
135102recnd 11151 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℂ)
136 qcn 12867 . . . . . . . . . . . . . . . 16 (((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
137124, 136syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
138135, 137npcand 11487 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = 𝑘)
139134, 138eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = 𝑘)
140139fveq2d 6835 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) = (𝐹𝑘))
141 cnfldmul 21308 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
14251, 141ressmulr 17218 . . . . . . . . . . . . . . . . 17 (ℚ ∈ V → · = (.r𝑄))
143125, 142ax-mp 5 . . . . . . . . . . . . . . . 16 · = (.r𝑄)
14450, 61, 143abvmul 20745 . . . . . . . . . . . . . . 15 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
14583, 122, 106, 144syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
14651, 50qabvexp 27584 . . . . . . . . . . . . . . . 16 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))
14783, 99, 91, 146syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))
148147oveq1d 7370 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) = (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
149145, 148eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
150149oveq2d 7371 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) = ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))))
151130, 140, 1503brtr3d 5126 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))))
152116, 91reexpcld 14077 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ∈ ℝ)
153115, 152remulcld 11153 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ∈ ℝ)
154 nn0re 12401 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
155154ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℝ)
156111, 155remulcld 11153 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 𝑛) ∈ ℝ)
157156, 152remulcld 11153 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · 𝑛) · (𝑇𝑛)) ∈ ℝ)
158111, 152remulcld 11153 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑇𝑛)) ∈ ℝ)
159 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘 mod (𝑀𝑛)) → (𝐹𝑗) = (𝐹‘(𝑘 mod (𝑀𝑛))))
160159breq1d 5105 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘 mod (𝑀𝑛)) → ((𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ (𝐹‘(𝑘 mod (𝑀𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
161 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
162 zmodfz 13804 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑀𝑛) ∈ ℕ) → (𝑘 mod (𝑀𝑛)) ∈ (0...((𝑀𝑛) − 1)))
16385, 92, 162syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ (0...((𝑀𝑛) − 1)))
164160, 161, 163rspcdva 3574 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑘 mod (𝑀𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
165111, 101remulcld 11153 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · ((𝐹𝑀)↑𝑛)) ∈ ℝ)
166101recnd 11151 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ∈ ℂ)
167108recnd 11151 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
168166, 167mulcomd 11144 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) · ((𝐹𝑀)↑𝑛)))
16950, 61abvge0 20741 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴𝑀 ∈ ℚ) → 0 ≤ (𝐹𝑀))
17083, 99, 169syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ (𝐹𝑀))
171100, 91, 170expge0d 14078 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ ((𝐹𝑀)↑𝑛))
172104zred 12587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℝ)
173 elfzle1 13434 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 0 ≤ 𝑘)
174173ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ 𝑘)
17592nnred 12151 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℝ)
17692nngt0d 12185 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 < (𝑀𝑛))
177 divge0 12002 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ ((𝑀𝑛) ∈ ℝ ∧ 0 < (𝑀𝑛))) → 0 ≤ (𝑘 / (𝑀𝑛)))
178102, 174, 175, 176, 177syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ (𝑘 / (𝑀𝑛)))
179 flge0nn0 13731 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 / (𝑀𝑛)) ∈ ℝ ∧ 0 ≤ (𝑘 / (𝑀𝑛))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0)
180103, 178, 179syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0)
18151, 50qabvle 27583 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴 ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ (⌊‘(𝑘 / (𝑀𝑛))))
18283, 180, 181syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ (⌊‘(𝑘 / (𝑀𝑛))))
183 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)))
184 0z 12490 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℤ
18590, 118nnexpcld 14159 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℕ)
186185nnzd 12505 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℤ)
187 elfzm11 13502 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℤ ∧ (𝑀↑(𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1)))))
188184, 186, 187sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1)))))
189183, 188mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1))))
190189simp3d 1144 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 < (𝑀↑(𝑛 + 1)))
19190nncnd 12152 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℂ)
192191, 91expp1d 14061 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
193190, 192breqtrd 5121 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 < ((𝑀𝑛) · 𝑀))
194 ltdivmul 12008 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑀𝑛) ∈ ℝ ∧ 0 < (𝑀𝑛))) → ((𝑘 / (𝑀𝑛)) < 𝑀𝑘 < ((𝑀𝑛) · 𝑀)))
195102, 111, 175, 176, 194syl112anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 / (𝑀𝑛)) < 𝑀𝑘 < ((𝑀𝑛) · 𝑀)))
196193, 195mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 / (𝑀𝑛)) < 𝑀)
19790nnzd 12505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℤ)
198 fllt 13717 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 / (𝑀𝑛)) ∈ ℝ ∧ 𝑀 ∈ ℤ) → ((𝑘 / (𝑀𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀))
199103, 197, 198syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 / (𝑀𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀))
200196, 199mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀)
201172, 111, 200ltled 11272 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ≤ 𝑀)
202108, 172, 111, 182, 201letrd 11281 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ 𝑀)
203108, 111, 101, 171, 202lemul1ad 12072 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) · ((𝐹𝑀)↑𝑛)) ≤ (𝑀 · ((𝐹𝑀)↑𝑛)))
204168, 203eqbrtrd 5117 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ≤ (𝑀 · ((𝐹𝑀)↑𝑛)))
20590nnnn0d 12453 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℕ0)
206205nn0ge0d 12456 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ 𝑀)
207 max1 13091 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → (𝐹𝑀) ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
208100, 58, 207sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
209208, 57breqtrrdi 5137 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ≤ 𝑇)
210 leexp1a 14089 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑀) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ 𝑇)) → ((𝐹𝑀)↑𝑛) ≤ (𝑇𝑛))
211100, 116, 91, 170, 209, 210syl32anc 1380 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ≤ (𝑇𝑛))
212101, 152, 111, 206, 211lemul2ad 12073 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · ((𝐹𝑀)↑𝑛)) ≤ (𝑀 · (𝑇𝑛)))
213109, 165, 158, 204, 212letrd 11281 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ≤ (𝑀 · (𝑇𝑛)))
21498, 109, 157, 158, 164, 213le2addd 11747 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
215 nn0cn 12402 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
216215ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℂ)
217 1cnd 11118 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ∈ ℂ)
218191, 216, 217adddid 11147 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
219191mulridd 11140 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 1) = 𝑀)
220219oveq2d 7371 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + 𝑀))
221218, 220eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + 𝑀))
222221oveq1d 7370 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) = (((𝑀 · 𝑛) + 𝑀) · (𝑇𝑛)))
223191, 216mulcld 11143 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 𝑛) ∈ ℂ)
224152recnd 11151 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ∈ ℂ)
225223, 191, 224adddird 11148 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝑀 · 𝑛) + 𝑀) · (𝑇𝑛)) = (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
226222, 225eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) = (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
227214, 226breqtrrd 5123 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)))
228 max2 13093 . . . . . . . . . . . . . . . 16 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
229100, 58, 228sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
230229, 57breqtrrdi 5137 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ≤ 𝑇)
231 nn0z 12503 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
232231ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℤ)
233 uzid 12757 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
234232, 233syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ (ℤ𝑛))
235 peano2uz 12805 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
236234, 235syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ (ℤ𝑛))
237116, 230, 236leexp2ad 14168 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)))
23890, 113nnmulcld 12189 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℕ)
239238nngt0d 12185 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 < (𝑀 · (𝑛 + 1)))
240 lemul2 11985 . . . . . . . . . . . . . 14 (((𝑇𝑛) ∈ ℝ ∧ (𝑇↑(𝑛 + 1)) ∈ ℝ ∧ ((𝑀 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑀 · (𝑛 + 1)))) → ((𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
241152, 119, 115, 239, 240syl112anc 1376 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
242237, 241mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
243110, 153, 120, 227, 242letrd 11281 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
24489, 110, 120, 151, 243letrd 11281 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
245244expr 456 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) → (∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
246245ralrimdva 3133 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
24782, 246biimtrid 242 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
248247expcom 413 . . . . . 6 (𝑛 ∈ ℕ0 → (𝜑 → (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
249248a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))) → (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
2509, 18, 27, 36, 79, 249nn0ind 12578 . . . 4 (𝑋 ∈ ℕ0 → (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
251250impcom 407 . . 3 ((𝜑𝑋 ∈ ℕ0) → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
252 fveq2 6831 . . . . 5 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
253252breq1d 5105 . . . 4 (𝑘 = 𝑌 → ((𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)) ↔ (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
254253rspccv 3570 . . 3 (∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)) → (𝑌 ∈ (0...((𝑀𝑋) − 1)) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
255251, 254syl 17 . 2 ((𝜑𝑋 ∈ ℕ0) → (𝑌 ∈ (0...((𝑀𝑋) − 1)) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
2562553impia 1117 1 ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  ifcif 4476   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  cmin 11355  -cneg 11356   / cdiv 11785  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  cq 12852  +crp 12896  ...cfz 13414  cfl 13701   mod cmo 13780  cexp 13975  cprime 16589   pCnt cpc 16755  s cress 17148  +gcplusg 17168  .rcmulr 17169  AbsValcabv 20732  fldccnfld 21300  logclog 26510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-ico 13258  df-fz 13415  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-subg 19044  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-subrng 20470  df-subrg 20494  df-drng 20655  df-abv 20733  df-cnfld 21301
This theorem is referenced by:  ostth2lem3  27593
  Copyright terms: Public domain W3C validator