MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem2 Structured version   Visualization version   GIF version

Theorem ostth2lem2 27561
Description: Lemma for ostth2 27564. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
Assertion
Ref Expression
ostth2lem2 ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑋   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑋(𝑞)   𝑌(𝑥,𝑞)

Proof of Theorem ostth2lem2
Dummy variables 𝑘 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . . . . 9 (𝑥 = 0 → (𝑀𝑥) = (𝑀↑0))
21oveq1d 7368 . . . . . . . 8 (𝑥 = 0 → ((𝑀𝑥) − 1) = ((𝑀↑0) − 1))
32oveq2d 7369 . . . . . . 7 (𝑥 = 0 → (0...((𝑀𝑥) − 1)) = (0...((𝑀↑0) − 1)))
4 oveq2 7361 . . . . . . . . 9 (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0))
5 oveq2 7361 . . . . . . . . 9 (𝑥 = 0 → (𝑇𝑥) = (𝑇↑0))
64, 5oveq12d 7371 . . . . . . . 8 (𝑥 = 0 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 0) · (𝑇↑0)))
76breq2d 5107 . . . . . . 7 (𝑥 = 0 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
83, 7raleqbidv 3310 . . . . . 6 (𝑥 = 0 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
98imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))))
10 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑀𝑥) = (𝑀𝑛))
1110oveq1d 7368 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑀𝑥) − 1) = ((𝑀𝑛) − 1))
1211oveq2d 7369 . . . . . . 7 (𝑥 = 𝑛 → (0...((𝑀𝑥) − 1)) = (0...((𝑀𝑛) − 1)))
13 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑀 · 𝑥) = (𝑀 · 𝑛))
14 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑇𝑥) = (𝑇𝑛))
1513, 14oveq12d 7371 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 𝑛) · (𝑇𝑛)))
1615breq2d 5107 . . . . . . 7 (𝑥 = 𝑛 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
1712, 16raleqbidv 3310 . . . . . 6 (𝑥 = 𝑛 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
1817imbi2d 340 . . . . 5 (𝑥 = 𝑛 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))))
19 oveq2 7361 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑀𝑥) = (𝑀↑(𝑛 + 1)))
2019oveq1d 7368 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑀𝑥) − 1) = ((𝑀↑(𝑛 + 1)) − 1))
2120oveq2d 7369 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...((𝑀𝑥) − 1)) = (0...((𝑀↑(𝑛 + 1)) − 1)))
22 oveq2 7361 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑛 + 1)))
23 oveq2 7361 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑇𝑥) = (𝑇↑(𝑛 + 1)))
2422, 23oveq12d 7371 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
2524breq2d 5107 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
2621, 25raleqbidv 3310 . . . . . 6 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
2726imbi2d 340 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
28 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀𝑥) = (𝑀𝑋))
2928oveq1d 7368 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀𝑥) − 1) = ((𝑀𝑋) − 1))
3029oveq2d 7369 . . . . . . 7 (𝑥 = 𝑋 → (0...((𝑀𝑥) − 1)) = (0...((𝑀𝑋) − 1)))
31 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀 · 𝑥) = (𝑀 · 𝑋))
32 oveq2 7361 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑇𝑥) = (𝑇𝑋))
3331, 32oveq12d 7371 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 𝑋) · (𝑇𝑋)))
3433breq2d 5107 . . . . . . 7 (𝑥 = 𝑋 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
3530, 34raleqbidv 3310 . . . . . 6 (𝑥 = 𝑋 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
3635imbi2d 340 . . . . 5 (𝑥 = 𝑋 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))))
37 ostth2.5 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘2))
38 eluz2nn 12807 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4039nncnd 12162 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
4140exp0d 14065 . . . . . . . . . . 11 (𝜑 → (𝑀↑0) = 1)
4241oveq1d 7368 . . . . . . . . . 10 (𝜑 → ((𝑀↑0) − 1) = (1 − 1))
43 1m1e0 12218 . . . . . . . . . 10 (1 − 1) = 0
4442, 43eqtrdi 2780 . . . . . . . . 9 (𝜑 → ((𝑀↑0) − 1) = 0)
4544oveq2d 7369 . . . . . . . 8 (𝜑 → (0...((𝑀↑0) − 1)) = (0...0))
4645eleq2d 2814 . . . . . . 7 (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) ↔ 𝑘 ∈ (0...0)))
47 0le0 12247 . . . . . . . . . 10 0 ≤ 0
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 0)
49 ostth.1 . . . . . . . . . 10 (𝜑𝐹𝐴)
50 qabsabv.a . . . . . . . . . . 11 𝐴 = (AbsVal‘𝑄)
51 qrng.q . . . . . . . . . . . 12 𝑄 = (ℂflds ℚ)
5251qrng0 27548 . . . . . . . . . . 11 0 = (0g𝑄)
5350, 52abv0 20726 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘0) = 0)
5449, 53syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = 0)
5540mul01d 11333 . . . . . . . . . . 11 (𝜑 → (𝑀 · 0) = 0)
5655oveq1d 7368 . . . . . . . . . 10 (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = (0 · (𝑇↑0)))
57 ostth2.7 . . . . . . . . . . . . . 14 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
58 1re 11134 . . . . . . . . . . . . . . 15 1 ∈ ℝ
59 nnq 12881 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
6039, 59syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℚ)
6151qrngbas 27546 . . . . . . . . . . . . . . . . 17 ℚ = (Base‘𝑄)
6250, 61abvcl 20719 . . . . . . . . . . . . . . . 16 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
6349, 60, 62syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑀) ∈ ℝ)
64 ifcl 4524 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
6558, 63, 64sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
6657, 65eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
6766recnd 11162 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
68 0nn0 12417 . . . . . . . . . . . 12 0 ∈ ℕ0
69 expcl 14004 . . . . . . . . . . . 12 ((𝑇 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑇↑0) ∈ ℂ)
7067, 68, 69sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑇↑0) ∈ ℂ)
7170mul02d 11332 . . . . . . . . . 10 (𝜑 → (0 · (𝑇↑0)) = 0)
7256, 71eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = 0)
7348, 54, 723brtr4d 5127 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0)))
74 elfz1eq 13456 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝑘 = 0)
7574fveq2d 6830 . . . . . . . . 9 (𝑘 ∈ (0...0) → (𝐹𝑘) = (𝐹‘0))
7675breq1d 5105 . . . . . . . 8 (𝑘 ∈ (0...0) → ((𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)) ↔ (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0))))
7773, 76syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑘 ∈ (0...0) → (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
7846, 77sylbid 240 . . . . . 6 (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) → (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
7978ralrimiv 3120 . . . . 5 (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))
80 fveq2 6826 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
8180breq1d 5105 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ (𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
8281cbvralvw 3207 . . . . . . . 8 (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
8349ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝐹𝐴)
84 elfzelz 13445 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 𝑘 ∈ ℤ)
8584ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℤ)
86 zq 12873 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
8785, 86syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℚ)
8850, 61abvcl 20719 . . . . . . . . . . . 12 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹𝑘) ∈ ℝ)
8983, 87, 88syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ∈ ℝ)
9039ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℕ)
91 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℕ0)
9290, 91nnexpcld 14170 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℕ)
9385, 92zmodcld 13814 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℕ0)
9493nn0zd 12515 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℤ)
95 zq 12873 . . . . . . . . . . . . . 14 ((𝑘 mod (𝑀𝑛)) ∈ ℤ → (𝑘 mod (𝑀𝑛)) ∈ ℚ)
9694, 95syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℚ)
9750, 61abvcl 20719 . . . . . . . . . . . . 13 ((𝐹𝐴 ∧ (𝑘 mod (𝑀𝑛)) ∈ ℚ) → (𝐹‘(𝑘 mod (𝑀𝑛))) ∈ ℝ)
9883, 96, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑘 mod (𝑀𝑛))) ∈ ℝ)
9990, 59syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℚ)
10083, 99, 62syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ∈ ℝ)
101100, 91reexpcld 14088 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ∈ ℝ)
10285zred 12598 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℝ)
103102, 92nndivred 12200 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 / (𝑀𝑛)) ∈ ℝ)
104103flcld 13720 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℤ)
105 zq 12873 . . . . . . . . . . . . . . 15 ((⌊‘(𝑘 / (𝑀𝑛))) ∈ ℤ → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ)
106104, 105syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ)
10750, 61abvcl 20719 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℝ)
10883, 106, 107syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℝ)
109101, 108remulcld 11164 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ∈ ℝ)
11098, 109readdcld 11163 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ∈ ℝ)
11190nnred 12161 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℝ)
112 nn0p1nn 12441 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
113112ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℕ)
114113nnred 12161 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℝ)
115111, 114remulcld 11164 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℝ)
11666ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑇 ∈ ℝ)
117 peano2nn0 12442 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
118117ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℕ0)
119116, 118reexpcld 14088 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇↑(𝑛 + 1)) ∈ ℝ)
120115, 119remulcld 11164 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))) ∈ ℝ)
121 nnq 12881 . . . . . . . . . . . . . . 15 ((𝑀𝑛) ∈ ℕ → (𝑀𝑛) ∈ ℚ)
12292, 121syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℚ)
123 qmulcl 12886 . . . . . . . . . . . . . 14 (((𝑀𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ)
124122, 106, 123syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ)
125 qex 12880 . . . . . . . . . . . . . . 15 ℚ ∈ V
126 cnfldadd 21285 . . . . . . . . . . . . . . . 16 + = (+g‘ℂfld)
12751, 126ressplusg 17213 . . . . . . . . . . . . . . 15 (ℚ ∈ V → + = (+g𝑄))
128125, 127ax-mp 5 . . . . . . . . . . . . . 14 + = (+g𝑄)
12950, 61, 128abvtri 20725 . . . . . . . . . . . . 13 ((𝐹𝐴 ∧ (𝑘 mod (𝑀𝑛)) ∈ ℚ ∧ ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))))
13083, 96, 124, 129syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))))
13192nnrpd 12953 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℝ+)
132 modval 13793 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℝ ∧ (𝑀𝑛) ∈ ℝ+) → (𝑘 mod (𝑀𝑛)) = (𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
133102, 131, 132syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) = (𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
134133oveq1d 7368 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
135102recnd 11162 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℂ)
136 qcn 12882 . . . . . . . . . . . . . . . 16 (((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
137124, 136syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
138135, 137npcand 11497 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = 𝑘)
139134, 138eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = 𝑘)
140139fveq2d 6830 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) = (𝐹𝑘))
141 cnfldmul 21287 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
14251, 141ressmulr 17229 . . . . . . . . . . . . . . . . 17 (ℚ ∈ V → · = (.r𝑄))
143125, 142ax-mp 5 . . . . . . . . . . . . . . . 16 · = (.r𝑄)
14450, 61, 143abvmul 20724 . . . . . . . . . . . . . . 15 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
14583, 122, 106, 144syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
14651, 50qabvexp 27553 . . . . . . . . . . . . . . . 16 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))
14783, 99, 91, 146syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))
148147oveq1d 7368 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) = (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
149145, 148eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
150149oveq2d 7369 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) = ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))))
151130, 140, 1503brtr3d 5126 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))))
152116, 91reexpcld 14088 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ∈ ℝ)
153115, 152remulcld 11164 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ∈ ℝ)
154 nn0re 12411 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
155154ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℝ)
156111, 155remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 𝑛) ∈ ℝ)
157156, 152remulcld 11164 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · 𝑛) · (𝑇𝑛)) ∈ ℝ)
158111, 152remulcld 11164 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑇𝑛)) ∈ ℝ)
159 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘 mod (𝑀𝑛)) → (𝐹𝑗) = (𝐹‘(𝑘 mod (𝑀𝑛))))
160159breq1d 5105 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘 mod (𝑀𝑛)) → ((𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ (𝐹‘(𝑘 mod (𝑀𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
161 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
162 zmodfz 13815 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑀𝑛) ∈ ℕ) → (𝑘 mod (𝑀𝑛)) ∈ (0...((𝑀𝑛) − 1)))
16385, 92, 162syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ (0...((𝑀𝑛) − 1)))
164160, 161, 163rspcdva 3580 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑘 mod (𝑀𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
165111, 101remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · ((𝐹𝑀)↑𝑛)) ∈ ℝ)
166101recnd 11162 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ∈ ℂ)
167108recnd 11162 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
168166, 167mulcomd 11155 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) · ((𝐹𝑀)↑𝑛)))
16950, 61abvge0 20720 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴𝑀 ∈ ℚ) → 0 ≤ (𝐹𝑀))
17083, 99, 169syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ (𝐹𝑀))
171100, 91, 170expge0d 14089 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ ((𝐹𝑀)↑𝑛))
172104zred 12598 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℝ)
173 elfzle1 13448 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 0 ≤ 𝑘)
174173ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ 𝑘)
17592nnred 12161 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℝ)
17692nngt0d 12195 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 < (𝑀𝑛))
177 divge0 12012 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ ((𝑀𝑛) ∈ ℝ ∧ 0 < (𝑀𝑛))) → 0 ≤ (𝑘 / (𝑀𝑛)))
178102, 174, 175, 176, 177syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ (𝑘 / (𝑀𝑛)))
179 flge0nn0 13742 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 / (𝑀𝑛)) ∈ ℝ ∧ 0 ≤ (𝑘 / (𝑀𝑛))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0)
180103, 178, 179syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0)
18151, 50qabvle 27552 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴 ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ (⌊‘(𝑘 / (𝑀𝑛))))
18283, 180, 181syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ (⌊‘(𝑘 / (𝑀𝑛))))
183 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)))
184 0z 12500 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℤ
18590, 118nnexpcld 14170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℕ)
186185nnzd 12516 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℤ)
187 elfzm11 13516 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℤ ∧ (𝑀↑(𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1)))))
188184, 186, 187sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1)))))
189183, 188mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1))))
190189simp3d 1144 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 < (𝑀↑(𝑛 + 1)))
19190nncnd 12162 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℂ)
192191, 91expp1d 14072 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
193190, 192breqtrd 5121 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 < ((𝑀𝑛) · 𝑀))
194 ltdivmul 12018 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑀𝑛) ∈ ℝ ∧ 0 < (𝑀𝑛))) → ((𝑘 / (𝑀𝑛)) < 𝑀𝑘 < ((𝑀𝑛) · 𝑀)))
195102, 111, 175, 176, 194syl112anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 / (𝑀𝑛)) < 𝑀𝑘 < ((𝑀𝑛) · 𝑀)))
196193, 195mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 / (𝑀𝑛)) < 𝑀)
19790nnzd 12516 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℤ)
198 fllt 13728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 / (𝑀𝑛)) ∈ ℝ ∧ 𝑀 ∈ ℤ) → ((𝑘 / (𝑀𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀))
199103, 197, 198syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 / (𝑀𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀))
200196, 199mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀)
201172, 111, 200ltled 11282 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ≤ 𝑀)
202108, 172, 111, 182, 201letrd 11291 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ 𝑀)
203108, 111, 101, 171, 202lemul1ad 12082 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) · ((𝐹𝑀)↑𝑛)) ≤ (𝑀 · ((𝐹𝑀)↑𝑛)))
204168, 203eqbrtrd 5117 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ≤ (𝑀 · ((𝐹𝑀)↑𝑛)))
20590nnnn0d 12463 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℕ0)
206205nn0ge0d 12466 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ 𝑀)
207 max1 13105 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → (𝐹𝑀) ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
208100, 58, 207sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
209208, 57breqtrrdi 5137 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ≤ 𝑇)
210 leexp1a 14100 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑀) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ 𝑇)) → ((𝐹𝑀)↑𝑛) ≤ (𝑇𝑛))
211100, 116, 91, 170, 209, 210syl32anc 1380 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ≤ (𝑇𝑛))
212101, 152, 111, 206, 211lemul2ad 12083 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · ((𝐹𝑀)↑𝑛)) ≤ (𝑀 · (𝑇𝑛)))
213109, 165, 158, 204, 212letrd 11291 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ≤ (𝑀 · (𝑇𝑛)))
21498, 109, 157, 158, 164, 213le2addd 11757 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
215 nn0cn 12412 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
216215ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℂ)
217 1cnd 11129 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ∈ ℂ)
218191, 216, 217adddid 11158 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
219191mulridd 11151 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 1) = 𝑀)
220219oveq2d 7369 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + 𝑀))
221218, 220eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + 𝑀))
222221oveq1d 7368 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) = (((𝑀 · 𝑛) + 𝑀) · (𝑇𝑛)))
223191, 216mulcld 11154 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 𝑛) ∈ ℂ)
224152recnd 11162 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ∈ ℂ)
225223, 191, 224adddird 11159 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝑀 · 𝑛) + 𝑀) · (𝑇𝑛)) = (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
226222, 225eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) = (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
227214, 226breqtrrd 5123 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)))
228 max2 13107 . . . . . . . . . . . . . . . 16 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
229100, 58, 228sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
230229, 57breqtrrdi 5137 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ≤ 𝑇)
231 nn0z 12514 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
232231ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℤ)
233 uzid 12768 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
234232, 233syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ (ℤ𝑛))
235 peano2uz 12820 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
236234, 235syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ (ℤ𝑛))
237116, 230, 236leexp2ad 14179 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)))
23890, 113nnmulcld 12199 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℕ)
239238nngt0d 12195 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 < (𝑀 · (𝑛 + 1)))
240 lemul2 11995 . . . . . . . . . . . . . 14 (((𝑇𝑛) ∈ ℝ ∧ (𝑇↑(𝑛 + 1)) ∈ ℝ ∧ ((𝑀 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑀 · (𝑛 + 1)))) → ((𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
241152, 119, 115, 239, 240syl112anc 1376 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
242237, 241mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
243110, 153, 120, 227, 242letrd 11291 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
24489, 110, 120, 151, 243letrd 11291 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
245244expr 456 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) → (∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
246245ralrimdva 3129 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
24782, 246biimtrid 242 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
248247expcom 413 . . . . . 6 (𝑛 ∈ ℕ0 → (𝜑 → (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
249248a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))) → (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
2509, 18, 27, 36, 79, 249nn0ind 12589 . . . 4 (𝑋 ∈ ℕ0 → (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
251250impcom 407 . . 3 ((𝜑𝑋 ∈ ℕ0) → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
252 fveq2 6826 . . . . 5 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
253252breq1d 5105 . . . 4 (𝑘 = 𝑌 → ((𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)) ↔ (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
254253rspccv 3576 . . 3 (∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)) → (𝑌 ∈ (0...((𝑀𝑋) − 1)) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
255251, 254syl 17 . 2 ((𝜑𝑋 ∈ ℕ0) → (𝑌 ∈ (0...((𝑀𝑋) − 1)) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
2562553impia 1117 1 ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cq 12867  +crp 12911  ...cfz 13428  cfl 13712   mod cmo 13791  cexp 13986  cprime 16600   pCnt cpc 16766  s cress 17159  +gcplusg 17179  .rcmulr 17180  AbsValcabv 20711  fldccnfld 21279  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-ico 13272  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-subrng 20449  df-subrg 20473  df-drng 20634  df-abv 20712  df-cnfld 21280
This theorem is referenced by:  ostth2lem3  27562
  Copyright terms: Public domain W3C validator