MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem2 Structured version   Visualization version   GIF version

Theorem ostth2lem2 27692
Description: Lemma for ostth2 27695. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
ostth2.5 (𝜑𝑀 ∈ (ℤ‘2))
ostth2.6 𝑆 = ((log‘(𝐹𝑀)) / (log‘𝑀))
ostth2.7 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
Assertion
Ref Expression
ostth2lem2 ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑞,𝜑   𝑥,𝑇   𝑥,𝑋   𝐴,𝑞,𝑥   𝑥,𝑁   𝑥,𝑄   𝐹,𝑞   𝑅,𝑞   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝑆(𝑥,𝑞)   𝑇(𝑞)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑋(𝑞)   𝑌(𝑥,𝑞)

Proof of Theorem ostth2lem2
Dummy variables 𝑘 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . . . . . . . . 9 (𝑥 = 0 → (𝑀𝑥) = (𝑀↑0))
21oveq1d 7445 . . . . . . . 8 (𝑥 = 0 → ((𝑀𝑥) − 1) = ((𝑀↑0) − 1))
32oveq2d 7446 . . . . . . 7 (𝑥 = 0 → (0...((𝑀𝑥) − 1)) = (0...((𝑀↑0) − 1)))
4 oveq2 7438 . . . . . . . . 9 (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0))
5 oveq2 7438 . . . . . . . . 9 (𝑥 = 0 → (𝑇𝑥) = (𝑇↑0))
64, 5oveq12d 7448 . . . . . . . 8 (𝑥 = 0 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 0) · (𝑇↑0)))
76breq2d 5159 . . . . . . 7 (𝑥 = 0 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
83, 7raleqbidv 3343 . . . . . 6 (𝑥 = 0 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
98imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))))
10 oveq2 7438 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑀𝑥) = (𝑀𝑛))
1110oveq1d 7445 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑀𝑥) − 1) = ((𝑀𝑛) − 1))
1211oveq2d 7446 . . . . . . 7 (𝑥 = 𝑛 → (0...((𝑀𝑥) − 1)) = (0...((𝑀𝑛) − 1)))
13 oveq2 7438 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑀 · 𝑥) = (𝑀 · 𝑛))
14 oveq2 7438 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑇𝑥) = (𝑇𝑛))
1513, 14oveq12d 7448 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 𝑛) · (𝑇𝑛)))
1615breq2d 5159 . . . . . . 7 (𝑥 = 𝑛 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
1712, 16raleqbidv 3343 . . . . . 6 (𝑥 = 𝑛 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
1817imbi2d 340 . . . . 5 (𝑥 = 𝑛 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))))
19 oveq2 7438 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑀𝑥) = (𝑀↑(𝑛 + 1)))
2019oveq1d 7445 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑀𝑥) − 1) = ((𝑀↑(𝑛 + 1)) − 1))
2120oveq2d 7446 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...((𝑀𝑥) − 1)) = (0...((𝑀↑(𝑛 + 1)) − 1)))
22 oveq2 7438 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑛 + 1)))
23 oveq2 7438 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑇𝑥) = (𝑇↑(𝑛 + 1)))
2422, 23oveq12d 7448 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
2524breq2d 5159 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
2621, 25raleqbidv 3343 . . . . . 6 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
2726imbi2d 340 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
28 oveq2 7438 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀𝑥) = (𝑀𝑋))
2928oveq1d 7445 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀𝑥) − 1) = ((𝑀𝑋) − 1))
3029oveq2d 7446 . . . . . . 7 (𝑥 = 𝑋 → (0...((𝑀𝑥) − 1)) = (0...((𝑀𝑋) − 1)))
31 oveq2 7438 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑀 · 𝑥) = (𝑀 · 𝑋))
32 oveq2 7438 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑇𝑥) = (𝑇𝑋))
3331, 32oveq12d 7448 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑀 · 𝑥) · (𝑇𝑥)) = ((𝑀 · 𝑋) · (𝑇𝑋)))
3433breq2d 5159 . . . . . . 7 (𝑥 = 𝑋 → ((𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ (𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
3530, 34raleqbidv 3343 . . . . . 6 (𝑥 = 𝑋 → (∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
3635imbi2d 340 . . . . 5 (𝑥 = 𝑋 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑥) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑥) · (𝑇𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))))
37 ostth2.5 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘2))
38 eluz2nn 12921 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4039nncnd 12279 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
4140exp0d 14176 . . . . . . . . . . 11 (𝜑 → (𝑀↑0) = 1)
4241oveq1d 7445 . . . . . . . . . 10 (𝜑 → ((𝑀↑0) − 1) = (1 − 1))
43 1m1e0 12335 . . . . . . . . . 10 (1 − 1) = 0
4442, 43eqtrdi 2790 . . . . . . . . 9 (𝜑 → ((𝑀↑0) − 1) = 0)
4544oveq2d 7446 . . . . . . . 8 (𝜑 → (0...((𝑀↑0) − 1)) = (0...0))
4645eleq2d 2824 . . . . . . 7 (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) ↔ 𝑘 ∈ (0...0)))
47 0le0 12364 . . . . . . . . . 10 0 ≤ 0
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 0)
49 ostth.1 . . . . . . . . . 10 (𝜑𝐹𝐴)
50 qabsabv.a . . . . . . . . . . 11 𝐴 = (AbsVal‘𝑄)
51 qrng.q . . . . . . . . . . . 12 𝑄 = (ℂflds ℚ)
5251qrng0 27679 . . . . . . . . . . 11 0 = (0g𝑄)
5350, 52abv0 20840 . . . . . . . . . 10 (𝐹𝐴 → (𝐹‘0) = 0)
5449, 53syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = 0)
5540mul01d 11457 . . . . . . . . . . 11 (𝜑 → (𝑀 · 0) = 0)
5655oveq1d 7445 . . . . . . . . . 10 (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = (0 · (𝑇↑0)))
57 ostth2.7 . . . . . . . . . . . . . 14 𝑇 = if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀))
58 1re 11258 . . . . . . . . . . . . . . 15 1 ∈ ℝ
59 nnq 13001 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
6039, 59syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℚ)
6151qrngbas 27677 . . . . . . . . . . . . . . . . 17 ℚ = (Base‘𝑄)
6250, 61abvcl 20833 . . . . . . . . . . . . . . . 16 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
6349, 60, 62syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑀) ∈ ℝ)
64 ifcl 4575 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (𝐹𝑀) ∈ ℝ) → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
6558, 63, 64sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)) ∈ ℝ)
6657, 65eqeltrid 2842 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
6766recnd 11286 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
68 0nn0 12538 . . . . . . . . . . . 12 0 ∈ ℕ0
69 expcl 14116 . . . . . . . . . . . 12 ((𝑇 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑇↑0) ∈ ℂ)
7067, 68, 69sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑇↑0) ∈ ℂ)
7170mul02d 11456 . . . . . . . . . 10 (𝜑 → (0 · (𝑇↑0)) = 0)
7256, 71eqtrd 2774 . . . . . . . . 9 (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = 0)
7348, 54, 723brtr4d 5179 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0)))
74 elfz1eq 13571 . . . . . . . . . 10 (𝑘 ∈ (0...0) → 𝑘 = 0)
7574fveq2d 6910 . . . . . . . . 9 (𝑘 ∈ (0...0) → (𝐹𝑘) = (𝐹‘0))
7675breq1d 5157 . . . . . . . 8 (𝑘 ∈ (0...0) → ((𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)) ↔ (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0))))
7773, 76syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑘 ∈ (0...0) → (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
7846, 77sylbid 240 . . . . . 6 (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) → (𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))
7978ralrimiv 3142 . . . . 5 (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))
80 fveq2 6906 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
8180breq1d 5157 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ (𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
8281cbvralvw 3234 . . . . . . . 8 (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
8349ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝐹𝐴)
84 elfzelz 13560 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 𝑘 ∈ ℤ)
8584ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℤ)
86 zq 12993 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ ℚ)
8785, 86syl 17 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℚ)
8850, 61abvcl 20833 . . . . . . . . . . . 12 ((𝐹𝐴𝑘 ∈ ℚ) → (𝐹𝑘) ∈ ℝ)
8983, 87, 88syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ∈ ℝ)
9039ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℕ)
91 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℕ0)
9290, 91nnexpcld 14280 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℕ)
9385, 92zmodcld 13928 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℕ0)
9493nn0zd 12636 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℤ)
95 zq 12993 . . . . . . . . . . . . . 14 ((𝑘 mod (𝑀𝑛)) ∈ ℤ → (𝑘 mod (𝑀𝑛)) ∈ ℚ)
9694, 95syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ ℚ)
9750, 61abvcl 20833 . . . . . . . . . . . . 13 ((𝐹𝐴 ∧ (𝑘 mod (𝑀𝑛)) ∈ ℚ) → (𝐹‘(𝑘 mod (𝑀𝑛))) ∈ ℝ)
9883, 96, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑘 mod (𝑀𝑛))) ∈ ℝ)
9990, 59syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℚ)
10083, 99, 62syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ∈ ℝ)
101100, 91reexpcld 14199 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ∈ ℝ)
10285zred 12719 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℝ)
103102, 92nndivred 12317 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 / (𝑀𝑛)) ∈ ℝ)
104103flcld 13834 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℤ)
105 zq 12993 . . . . . . . . . . . . . . 15 ((⌊‘(𝑘 / (𝑀𝑛))) ∈ ℤ → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ)
106104, 105syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ)
10750, 61abvcl 20833 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℝ)
10883, 106, 107syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℝ)
109101, 108remulcld 11288 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ∈ ℝ)
11098, 109readdcld 11287 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ∈ ℝ)
11190nnred 12278 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℝ)
112 nn0p1nn 12562 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
113112ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℕ)
114113nnred 12278 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℝ)
115111, 114remulcld 11288 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℝ)
11666ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑇 ∈ ℝ)
117 peano2nn0 12563 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
118117ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ ℕ0)
119116, 118reexpcld 14199 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇↑(𝑛 + 1)) ∈ ℝ)
120115, 119remulcld 11288 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))) ∈ ℝ)
121 nnq 13001 . . . . . . . . . . . . . . 15 ((𝑀𝑛) ∈ ℕ → (𝑀𝑛) ∈ ℚ)
12292, 121syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℚ)
123 qmulcl 13006 . . . . . . . . . . . . . 14 (((𝑀𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ)
124122, 106, 123syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ)
125 qex 13000 . . . . . . . . . . . . . . 15 ℚ ∈ V
126 cnfldadd 21387 . . . . . . . . . . . . . . . 16 + = (+g‘ℂfld)
12751, 126ressplusg 17335 . . . . . . . . . . . . . . 15 (ℚ ∈ V → + = (+g𝑄))
128125, 127ax-mp 5 . . . . . . . . . . . . . 14 + = (+g𝑄)
12950, 61, 128abvtri 20839 . . . . . . . . . . . . 13 ((𝐹𝐴 ∧ (𝑘 mod (𝑀𝑛)) ∈ ℚ ∧ ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))))
13083, 96, 124, 129syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))))
13192nnrpd 13072 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℝ+)
132 modval 13907 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℝ ∧ (𝑀𝑛) ∈ ℝ+) → (𝑘 mod (𝑀𝑛)) = (𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
133102, 131, 132syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) = (𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
134133oveq1d 7445 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))))
135102recnd 11286 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ ℂ)
136 qcn 13002 . . . . . . . . . . . . . . . 16 (((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℚ → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
137124, 136syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
138135, 137npcand 11621 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 − ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = 𝑘)
139134, 138eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = 𝑘)
140139fveq2d 6910 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑘 mod (𝑀𝑛)) + ((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) = (𝐹𝑘))
141 cnfldmul 21389 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
14251, 141ressmulr 17352 . . . . . . . . . . . . . . . . 17 (ℚ ∈ V → · = (.r𝑄))
143125, 142ax-mp 5 . . . . . . . . . . . . . . . 16 · = (.r𝑄)
14450, 61, 143abvmul 20838 . . . . . . . . . . . . . . 15 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℚ) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
14583, 122, 106, 144syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
14651, 50qabvexp 27684 . . . . . . . . . . . . . . . 16 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))
14783, 99, 91, 146syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))
148147oveq1d 7445 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑀𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) = (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
149145, 148eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛))))) = (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))))
150149oveq2d 7446 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (𝐹‘((𝑀𝑛) · (⌊‘(𝑘 / (𝑀𝑛)))))) = ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))))
151130, 140, 1503brtr3d 5178 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ≤ ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))))
152116, 91reexpcld 14199 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ∈ ℝ)
153115, 152remulcld 11288 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ∈ ℝ)
154 nn0re 12532 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
155154ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℝ)
156111, 155remulcld 11288 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 𝑛) ∈ ℝ)
157156, 152remulcld 11288 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · 𝑛) · (𝑇𝑛)) ∈ ℝ)
158111, 152remulcld 11288 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑇𝑛)) ∈ ℝ)
159 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘 mod (𝑀𝑛)) → (𝐹𝑗) = (𝐹‘(𝑘 mod (𝑀𝑛))))
160159breq1d 5157 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘 mod (𝑀𝑛)) → ((𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) ↔ (𝐹‘(𝑘 mod (𝑀𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))))
161 simprr 773 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
162 zmodfz 13929 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ (𝑀𝑛) ∈ ℕ) → (𝑘 mod (𝑀𝑛)) ∈ (0...((𝑀𝑛) − 1)))
16385, 92, 162syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 mod (𝑀𝑛)) ∈ (0...((𝑀𝑛) − 1)))
164160, 161, 163rspcdva 3622 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(𝑘 mod (𝑀𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))
165111, 101remulcld 11288 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · ((𝐹𝑀)↑𝑛)) ∈ ℝ)
166101recnd 11286 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ∈ ℂ)
167108recnd 11286 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ∈ ℂ)
168166, 167mulcomd 11279 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) = ((𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) · ((𝐹𝑀)↑𝑛)))
16950, 61abvge0 20834 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴𝑀 ∈ ℚ) → 0 ≤ (𝐹𝑀))
17083, 99, 169syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ (𝐹𝑀))
171100, 91, 170expge0d 14200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ ((𝐹𝑀)↑𝑛))
172104zred 12719 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℝ)
173 elfzle1 13563 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 0 ≤ 𝑘)
174173ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ 𝑘)
17592nnred 12278 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀𝑛) ∈ ℝ)
17692nngt0d 12312 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 < (𝑀𝑛))
177 divge0 12134 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ ((𝑀𝑛) ∈ ℝ ∧ 0 < (𝑀𝑛))) → 0 ≤ (𝑘 / (𝑀𝑛)))
178102, 174, 175, 176, 177syl22anc 839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ (𝑘 / (𝑀𝑛)))
179 flge0nn0 13856 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 / (𝑀𝑛)) ∈ ℝ ∧ 0 ≤ (𝑘 / (𝑀𝑛))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0)
180103, 178, 179syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0)
18151, 50qabvle 27683 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐴 ∧ (⌊‘(𝑘 / (𝑀𝑛))) ∈ ℕ0) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ (⌊‘(𝑘 / (𝑀𝑛))))
18283, 180, 181syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ (⌊‘(𝑘 / (𝑀𝑛))))
183 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)))
184 0z 12621 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℤ
18590, 118nnexpcld 14280 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℕ)
186185nnzd 12637 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℤ)
187 elfzm11 13631 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℤ ∧ (𝑀↑(𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1)))))
188184, 186, 187sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1)))))
189183, 188mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘𝑘 < (𝑀↑(𝑛 + 1))))
190189simp3d 1143 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 < (𝑀↑(𝑛 + 1)))
19190nncnd 12279 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℂ)
192191, 91expp1d 14183 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
193190, 192breqtrd 5173 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑘 < ((𝑀𝑛) · 𝑀))
194 ltdivmul 12140 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑀𝑛) ∈ ℝ ∧ 0 < (𝑀𝑛))) → ((𝑘 / (𝑀𝑛)) < 𝑀𝑘 < ((𝑀𝑛) · 𝑀)))
195102, 111, 175, 176, 194syl112anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 / (𝑀𝑛)) < 𝑀𝑘 < ((𝑀𝑛) · 𝑀)))
196193, 195mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑘 / (𝑀𝑛)) < 𝑀)
19790nnzd 12637 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℤ)
198 fllt 13842 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 / (𝑀𝑛)) ∈ ℝ ∧ 𝑀 ∈ ℤ) → ((𝑘 / (𝑀𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀))
199103, 197, 198syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑘 / (𝑀𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀))
200196, 199mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) < 𝑀)
201172, 111, 200ltled 11406 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (⌊‘(𝑘 / (𝑀𝑛))) ≤ 𝑀)
202108, 172, 111, 182, 201letrd 11415 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) ≤ 𝑀)
203108, 111, 101, 171, 202lemul1ad 12204 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))) · ((𝐹𝑀)↑𝑛)) ≤ (𝑀 · ((𝐹𝑀)↑𝑛)))
204168, 203eqbrtrd 5169 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ≤ (𝑀 · ((𝐹𝑀)↑𝑛)))
20590nnnn0d 12584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑀 ∈ ℕ0)
206205nn0ge0d 12587 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 ≤ 𝑀)
207 max1 13223 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → (𝐹𝑀) ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
208100, 58, 207sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
209208, 57breqtrrdi 5189 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑀) ≤ 𝑇)
210 leexp1a 14211 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑀) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ 𝑇)) → ((𝐹𝑀)↑𝑛) ≤ (𝑇𝑛))
211100, 116, 91, 170, 209, 210syl32anc 1377 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹𝑀)↑𝑛) ≤ (𝑇𝑛))
212101, 152, 111, 206, 211lemul2ad 12205 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · ((𝐹𝑀)↑𝑛)) ≤ (𝑀 · (𝑇𝑛)))
213109, 165, 158, 204, 212letrd 11415 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛))))) ≤ (𝑀 · (𝑇𝑛)))
21498, 109, 157, 158, 164, 213le2addd 11879 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
215 nn0cn 12533 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
216215ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℂ)
217 1cnd 11253 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ∈ ℂ)
218191, 216, 217adddid 11282 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
219191mulridd 11275 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 1) = 𝑀)
220219oveq2d 7446 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + 𝑀))
221218, 220eqtrd 2774 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + 𝑀))
222221oveq1d 7445 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) = (((𝑀 · 𝑛) + 𝑀) · (𝑇𝑛)))
223191, 216mulcld 11278 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · 𝑛) ∈ ℂ)
224152recnd 11286 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ∈ ℂ)
225223, 191, 224adddird 11283 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (((𝑀 · 𝑛) + 𝑀) · (𝑇𝑛)) = (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
226222, 225eqtrd 2774 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) = (((𝑀 · 𝑛) · (𝑇𝑛)) + (𝑀 · (𝑇𝑛))))
227214, 226breqtrrd 5175 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)))
228 max2 13225 . . . . . . . . . . . . . . . 16 (((𝐹𝑀) ∈ ℝ ∧ 1 ∈ ℝ) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
229100, 58, 228sylancl 586 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ≤ if((𝐹𝑀) ≤ 1, 1, (𝐹𝑀)))
230229, 57breqtrrdi 5189 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 1 ≤ 𝑇)
231 nn0z 12635 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
232231ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ ℤ)
233 uzid 12890 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
234232, 233syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 𝑛 ∈ (ℤ𝑛))
235 peano2uz 12940 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
236234, 235syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑛 + 1) ∈ (ℤ𝑛))
237116, 230, 236leexp2ad 14289 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)))
23890, 113nnmulcld 12316 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℕ)
239238nngt0d 12312 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → 0 < (𝑀 · (𝑛 + 1)))
240 lemul2 12117 . . . . . . . . . . . . . 14 (((𝑇𝑛) ∈ ℝ ∧ (𝑇↑(𝑛 + 1)) ∈ ℝ ∧ ((𝑀 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑀 · (𝑛 + 1)))) → ((𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
241152, 119, 115, 239, 240syl112anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑇𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
242237, 241mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
243110, 153, 120, 227, 242letrd 11415 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → ((𝐹‘(𝑘 mod (𝑀𝑛))) + (((𝐹𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
24489, 110, 120, 151, 243letrd 11415 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)))) → (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))
245244expr 456 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) → (∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → (𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
246245ralrimdva 3151 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (∀𝑗 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑗) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
24782, 246biimtrid 242 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))
248247expcom 413 . . . . . 6 (𝑛 ∈ ℕ0 → (𝜑 → (∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
249248a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀𝑛) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑛) · (𝑇𝑛))) → (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))))
2509, 18, 27, 36, 79, 249nn0ind 12710 . . . 4 (𝑋 ∈ ℕ0 → (𝜑 → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
251250impcom 407 . . 3 ((𝜑𝑋 ∈ ℕ0) → ∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
252 fveq2 6906 . . . . 5 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
253252breq1d 5157 . . . 4 (𝑘 = 𝑌 → ((𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)) ↔ (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
254253rspccv 3618 . . 3 (∀𝑘 ∈ (0...((𝑀𝑋) − 1))(𝐹𝑘) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)) → (𝑌 ∈ (0...((𝑀𝑋) − 1)) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
255251, 254syl 17 . 2 ((𝜑𝑋 ∈ ℕ0) → (𝑌 ∈ (0...((𝑀𝑋) − 1)) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋))))
2562553impia 1116 1 ((𝜑𝑋 ∈ ℕ0𝑌 ∈ (0...((𝑀𝑋) − 1))) → (𝐹𝑌) ≤ ((𝑀 · 𝑋) · (𝑇𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  ifcif 4530   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cq 12987  +crp 13031  ...cfz 13543  cfl 13826   mod cmo 13905  cexp 14098  cprime 16704   pCnt cpc 16869  s cress 17273  +gcplusg 17297  .rcmulr 17298  AbsValcabv 20825  fldccnfld 21381  logclog 26610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-ico 13389  df-fz 13544  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-subg 19153  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-subrng 20562  df-subrg 20586  df-drng 20747  df-abv 20826  df-cnfld 21382
This theorem is referenced by:  ostth2lem3  27693
  Copyright terms: Public domain W3C validator