| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑀↑𝑥) = (𝑀↑0)) |
| 2 | 1 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑀↑𝑥) − 1) = ((𝑀↑0) − 1)) |
| 3 | 2 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑥 = 0 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑0) − 1))) |
| 4 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0)) |
| 5 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑇↑𝑥) = (𝑇↑0)) |
| 6 | 4, 5 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 0) · (𝑇↑0))) |
| 7 | 6 | breq2d 5136 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 8 | 3, 7 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑥 = 0 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 9 | 8 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))) |
| 10 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑀↑𝑥) = (𝑀↑𝑛)) |
| 11 | 10 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑀↑𝑥) − 1) = ((𝑀↑𝑛) − 1)) |
| 12 | 11 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑𝑛) − 1))) |
| 13 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑀 · 𝑥) = (𝑀 · 𝑛)) |
| 14 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑇↑𝑥) = (𝑇↑𝑛)) |
| 15 | 13, 14 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 16 | 15 | breq2d 5136 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 17 | 12, 16 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 18 | 17 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))))) |
| 19 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑀↑𝑥) = (𝑀↑(𝑛 + 1))) |
| 20 | 19 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑀↑𝑥) − 1) = ((𝑀↑(𝑛 + 1)) − 1)) |
| 21 | 20 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑(𝑛 + 1)) − 1))) |
| 22 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑛 + 1))) |
| 23 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑇↑𝑥) = (𝑇↑(𝑛 + 1))) |
| 24 | 22, 23 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 25 | 24 | breq2d 5136 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 26 | 21, 25 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 27 | 26 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
| 28 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀↑𝑥) = (𝑀↑𝑋)) |
| 29 | 28 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀↑𝑥) − 1) = ((𝑀↑𝑋) − 1)) |
| 30 | 29 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑𝑋) − 1))) |
| 31 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀 · 𝑥) = (𝑀 · 𝑋)) |
| 32 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑇↑𝑥) = (𝑇↑𝑋)) |
| 33 | 31, 32 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 𝑋) · (𝑇↑𝑋))) |
| 34 | 33 | breq2d 5136 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 35 | 30, 34 | raleqbidv 3329 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 36 | 35 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))))) |
| 37 | | ostth2.5 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘2)) |
| 38 | | eluz2nn 12903 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℕ) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 40 | 39 | nncnd 12261 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 41 | 40 | exp0d 14163 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀↑0) = 1) |
| 42 | 41 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀↑0) − 1) = (1 −
1)) |
| 43 | | 1m1e0 12317 |
. . . . . . . . . 10
⊢ (1
− 1) = 0 |
| 44 | 42, 43 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀↑0) − 1) = 0) |
| 45 | 44 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝜑 → (0...((𝑀↑0) − 1)) =
(0...0)) |
| 46 | 45 | eleq2d 2821 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) ↔ 𝑘 ∈
(0...0))) |
| 47 | | 0le0 12346 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 48 | 47 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 0) |
| 49 | | ostth.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| 50 | | qabsabv.a |
. . . . . . . . . . 11
⊢ 𝐴 = (AbsVal‘𝑄) |
| 51 | | qrng.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 52 | 51 | qrng0 27589 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑄) |
| 53 | 50, 52 | abv0 20788 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐴 → (𝐹‘0) = 0) |
| 54 | 49, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘0) = 0) |
| 55 | 40 | mul01d 11439 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 0) = 0) |
| 56 | 55 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = (0 · (𝑇↑0))) |
| 57 | | ostth2.7 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) |
| 58 | | 1re 11240 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 59 | | nnq 12983 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) |
| 60 | 39, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℚ) |
| 61 | 51 | qrngbas 27587 |
. . . . . . . . . . . . . . . . 17
⊢ ℚ =
(Base‘𝑄) |
| 62 | 50, 61 | abvcl 20781 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℝ) |
| 63 | 49, 60, 62 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 64 | | ifcl 4551 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
| 65 | 58, 63, 64 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
| 66 | 57, 65 | eqeltrid 2839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 67 | 66 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 68 | | 0nn0 12521 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
| 69 | | expcl 14102 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝑇↑0) ∈ ℂ) |
| 70 | 67, 68, 69 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇↑0) ∈ ℂ) |
| 71 | 70 | mul02d 11438 |
. . . . . . . . . 10
⊢ (𝜑 → (0 · (𝑇↑0)) = 0) |
| 72 | 56, 71 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = 0) |
| 73 | 48, 54, 72 | 3brtr4d 5156 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0))) |
| 74 | | elfz1eq 13557 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
| 75 | 74 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...0) → (𝐹‘𝑘) = (𝐹‘0)) |
| 76 | 75 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...0) → ((𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)) ↔ (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 77 | 73, 76 | syl5ibrcom 247 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...0) → (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 78 | 46, 77 | sylbid 240 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) → (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
| 79 | 78 | ralrimiv 3132 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))) |
| 80 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
| 81 | 80 | breq1d 5134 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ (𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 82 | 81 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 83 | 49 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝐹 ∈ 𝐴) |
| 84 | | elfzelz 13546 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 𝑘 ∈ ℤ) |
| 85 | 84 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℤ) |
| 86 | | zq 12975 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℚ) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℚ) |
| 88 | 50, 61 | abvcl 20781 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑘 ∈ ℚ) → (𝐹‘𝑘) ∈ ℝ) |
| 89 | 83, 87, 88 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ∈ ℝ) |
| 90 | 39 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℕ) |
| 91 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℕ0) |
| 92 | 90, 91 | nnexpcld 14268 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℕ) |
| 93 | 85, 92 | zmodcld 13914 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈
ℕ0) |
| 94 | 93 | nn0zd 12619 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ ℤ) |
| 95 | | zq 12975 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 mod (𝑀↑𝑛)) ∈ ℤ → (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) |
| 97 | 50, 61 | abvcl 20781 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ∈ ℝ) |
| 98 | 83, 96, 97 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ∈ ℝ) |
| 99 | 90, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℚ) |
| 100 | 83, 99, 62 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ∈ ℝ) |
| 101 | 100, 91 | reexpcld 14186 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ∈ ℝ) |
| 102 | 85 | zred 12702 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℝ) |
| 103 | 102, 92 | nndivred 12299 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 / (𝑀↑𝑛)) ∈ ℝ) |
| 104 | 103 | flcld 13820 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℤ) |
| 105 | | zq 12975 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘(𝑘 /
(𝑀↑𝑛))) ∈ ℤ →
(⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) |
| 107 | 50, 61 | abvcl 20781 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝐴 ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℝ) |
| 108 | 83, 106, 107 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℝ) |
| 109 | 101, 108 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ∈ ℝ) |
| 110 | 98, 109 | readdcld 11269 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ∈ ℝ) |
| 111 | 90 | nnred 12260 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℝ) |
| 112 | | nn0p1nn 12545 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ) |
| 113 | 112 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈ ℕ) |
| 114 | 113 | nnred 12260 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈ ℝ) |
| 115 | 111, 114 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℝ) |
| 116 | 66 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑇 ∈ ℝ) |
| 117 | | peano2nn0 12546 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
| 118 | 117 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈
ℕ0) |
| 119 | 116, 118 | reexpcld 14186 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑(𝑛 + 1)) ∈ ℝ) |
| 120 | 115, 119 | remulcld 11270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))) ∈ ℝ) |
| 121 | | nnq 12983 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀↑𝑛) ∈ ℕ → (𝑀↑𝑛) ∈ ℚ) |
| 122 | 92, 121 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℚ) |
| 123 | | qmulcl 12988 |
. . . . . . . . . . . . . 14
⊢ (((𝑀↑𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) |
| 124 | 122, 106,
123 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) |
| 125 | | qex 12982 |
. . . . . . . . . . . . . . 15
⊢ ℚ
∈ V |
| 126 | | cnfldadd 21326 |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘ℂfld) |
| 127 | 51, 126 | ressplusg 17310 |
. . . . . . . . . . . . . . 15
⊢ (ℚ
∈ V → + = (+g‘𝑄)) |
| 128 | 125, 127 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑄) |
| 129 | 50, 61, 128 | abvtri 20787 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑘 mod (𝑀↑𝑛)) ∈ ℚ ∧ ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 130 | 83, 96, 124, 129 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 131 | 92 | nnrpd 13054 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈
ℝ+) |
| 132 | | modval 13893 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℝ ∧ (𝑀↑𝑛) ∈ ℝ+) → (𝑘 mod (𝑀↑𝑛)) = (𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 133 | 102, 131,
132 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) = (𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 134 | 133 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 135 | 102 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℂ) |
| 136 | | qcn 12984 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
| 137 | 124, 136 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
| 138 | 135, 137 | npcand 11603 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = 𝑘) |
| 139 | 134, 138 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = 𝑘) |
| 140 | 139 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) = (𝐹‘𝑘)) |
| 141 | | cnfldmul 21328 |
. . . . . . . . . . . . . . . . . 18
⊢ ·
= (.r‘ℂfld) |
| 142 | 51, 141 | ressmulr 17326 |
. . . . . . . . . . . . . . . . 17
⊢ (ℚ
∈ V → · = (.r‘𝑄)) |
| 143 | 125, 142 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ·
= (.r‘𝑄) |
| 144 | 50, 61, 143 | abvmul 20786 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑀↑𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 145 | 83, 122, 106, 144 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 146 | 51, 50 | qabvexp 27594 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) |
| 147 | 83, 99, 91, 146 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) |
| 148 | 147 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 149 | 145, 148 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
| 150 | 149 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) = ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 151 | 130, 140,
150 | 3brtr3d 5155 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))))) |
| 152 | 116, 91 | reexpcld 14186 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ∈ ℝ) |
| 153 | 115, 152 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ∈ ℝ) |
| 154 | | nn0re 12515 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
| 155 | 154 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℝ) |
| 156 | 111, 155 | remulcld 11270 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 𝑛) ∈ ℝ) |
| 157 | 156, 152 | remulcld 11270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · 𝑛) · (𝑇↑𝑛)) ∈ ℝ) |
| 158 | 111, 152 | remulcld 11270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑇↑𝑛)) ∈ ℝ) |
| 159 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 mod (𝑀↑𝑛)) → (𝐹‘𝑗) = (𝐹‘(𝑘 mod (𝑀↑𝑛)))) |
| 160 | 159 | breq1d 5134 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑘 mod (𝑀↑𝑛)) → ((𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
| 161 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 162 | | zmodfz 13915 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑀↑𝑛) ∈ ℕ) → (𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1))) |
| 163 | 85, 92, 162 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1))) |
| 164 | 160, 161,
163 | rspcdva 3607 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
| 165 | 111, 101 | remulcld 11270 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · ((𝐹‘𝑀)↑𝑛)) ∈ ℝ) |
| 166 | 101 | recnd 11268 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ∈ ℂ) |
| 167 | 108 | recnd 11268 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
| 168 | 166, 167 | mulcomd 11261 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) · ((𝐹‘𝑀)↑𝑛))) |
| 169 | 50, 61 | abvge0 20782 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → 0 ≤ (𝐹‘𝑀)) |
| 170 | 83, 99, 169 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ (𝐹‘𝑀)) |
| 171 | 100, 91, 170 | expge0d 14187 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ ((𝐹‘𝑀)↑𝑛)) |
| 172 | 104 | zred 12702 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℝ) |
| 173 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 0 ≤ 𝑘) |
| 174 | 173 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ 𝑘) |
| 175 | 92 | nnred 12260 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℝ) |
| 176 | 92 | nngt0d 12294 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 < (𝑀↑𝑛)) |
| 177 | | divge0 12116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 ∈ ℝ ∧ 0 ≤
𝑘) ∧ ((𝑀↑𝑛) ∈ ℝ ∧ 0 < (𝑀↑𝑛))) → 0 ≤ (𝑘 / (𝑀↑𝑛))) |
| 178 | 102, 174,
175, 176, 177 | syl22anc 838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ (𝑘 / (𝑀↑𝑛))) |
| 179 | | flge0nn0 13842 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 / (𝑀↑𝑛)) ∈ ℝ ∧ 0 ≤ (𝑘 / (𝑀↑𝑛))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈
ℕ0) |
| 180 | 103, 178,
179 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈
ℕ0) |
| 181 | 51, 50 | qabvle 27593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ 𝐴 ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℕ0) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ (⌊‘(𝑘 / (𝑀↑𝑛)))) |
| 182 | 83, 180, 181 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ (⌊‘(𝑘 / (𝑀↑𝑛)))) |
| 183 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) |
| 184 | | 0z 12604 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℤ |
| 185 | 90, 118 | nnexpcld 14268 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℕ) |
| 186 | 185 | nnzd 12620 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℤ) |
| 187 | | elfzm11 13617 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((0
∈ ℤ ∧ (𝑀↑(𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1))))) |
| 188 | 184, 186,
187 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1))))) |
| 189 | 183, 188 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1)))) |
| 190 | 189 | simp3d 1144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 < (𝑀↑(𝑛 + 1))) |
| 191 | 90 | nncnd 12261 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℂ) |
| 192 | 191, 91 | expp1d 14170 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) = ((𝑀↑𝑛) · 𝑀)) |
| 193 | 190, 192 | breqtrd 5150 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 < ((𝑀↑𝑛) · 𝑀)) |
| 194 | | ltdivmul 12122 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑀↑𝑛) ∈ ℝ ∧ 0 < (𝑀↑𝑛))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ 𝑘 < ((𝑀↑𝑛) · 𝑀))) |
| 195 | 102, 111,
175, 176, 194 | syl112anc 1376 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ 𝑘 < ((𝑀↑𝑛) · 𝑀))) |
| 196 | 193, 195 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 / (𝑀↑𝑛)) < 𝑀) |
| 197 | 90 | nnzd 12620 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℤ) |
| 198 | | fllt 13828 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 / (𝑀↑𝑛)) ∈ ℝ ∧ 𝑀 ∈ ℤ) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀)) |
| 199 | 103, 197,
198 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀)) |
| 200 | 196, 199 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀) |
| 201 | 172, 111,
200 | ltled 11388 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ≤ 𝑀) |
| 202 | 108, 172,
111, 182, 201 | letrd 11397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ 𝑀) |
| 203 | 108, 111,
101, 171, 202 | lemul1ad 12186 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) · ((𝐹‘𝑀)↑𝑛)) ≤ (𝑀 · ((𝐹‘𝑀)↑𝑛))) |
| 204 | 168, 203 | eqbrtrd 5146 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ≤ (𝑀 · ((𝐹‘𝑀)↑𝑛))) |
| 205 | 90 | nnnn0d 12567 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈
ℕ0) |
| 206 | 205 | nn0ge0d 12570 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ 𝑀) |
| 207 | | max1 13206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ (𝐹‘𝑀) ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 208 | 100, 58, 207 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 209 | 208, 57 | breqtrrdi 5166 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ≤ 𝑇) |
| 210 | | leexp1a 14198 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑀) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0) ∧ (0 ≤
(𝐹‘𝑀) ∧ (𝐹‘𝑀) ≤ 𝑇)) → ((𝐹‘𝑀)↑𝑛) ≤ (𝑇↑𝑛)) |
| 211 | 100, 116,
91, 170, 209, 210 | syl32anc 1380 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ≤ (𝑇↑𝑛)) |
| 212 | 101, 152,
111, 206, 211 | lemul2ad 12187 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · ((𝐹‘𝑀)↑𝑛)) ≤ (𝑀 · (𝑇↑𝑛))) |
| 213 | 109, 165,
158, 204, 212 | letrd 11397 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ≤ (𝑀 · (𝑇↑𝑛))) |
| 214 | 98, 109, 157, 158, 164, 213 | le2addd 11861 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
| 215 | | nn0cn 12516 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
| 216 | 215 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℂ) |
| 217 | | 1cnd 11235 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ∈
ℂ) |
| 218 | 191, 216,
217 | adddid 11264 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
| 219 | 191 | mulridd 11257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 1) = 𝑀) |
| 220 | 219 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + 𝑀)) |
| 221 | 218, 220 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + 𝑀)) |
| 222 | 221 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) + 𝑀) · (𝑇↑𝑛))) |
| 223 | 191, 216 | mulcld 11260 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 𝑛) ∈ ℂ) |
| 224 | 152 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ∈ ℂ) |
| 225 | 223, 191,
224 | adddird 11265 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝑀 · 𝑛) + 𝑀) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
| 226 | 222, 225 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
| 227 | 214, 226 | breqtrrd 5152 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛))) |
| 228 | | max2 13208 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 229 | 100, 58, 228 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
| 230 | 229, 57 | breqtrrdi 5166 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ≤ 𝑇) |
| 231 | | nn0z 12618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 232 | 231 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℤ) |
| 233 | | uzid 12872 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
| 234 | 232, 233 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ (ℤ≥‘𝑛)) |
| 235 | | peano2uz 12922 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
| 236 | 234, 235 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
| 237 | 116, 230,
236 | leexp2ad 14277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1))) |
| 238 | 90, 113 | nnmulcld 12298 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℕ) |
| 239 | 238 | nngt0d 12294 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 < (𝑀 · (𝑛 + 1))) |
| 240 | | lemul2 12099 |
. . . . . . . . . . . . . 14
⊢ (((𝑇↑𝑛) ∈ ℝ ∧ (𝑇↑(𝑛 + 1)) ∈ ℝ ∧ ((𝑀 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑀 · (𝑛 + 1)))) → ((𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 241 | 152, 119,
115, 239, 240 | syl112anc 1376 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 242 | 237, 241 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 243 | 110, 153,
120, 227, 242 | letrd 11397 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 244 | 89, 110, 120, 151, 243 | letrd 11397 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
| 245 | 244 | expr 456 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) → (∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 246 | 245 | ralrimdva 3141 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∀𝑗 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 247 | 82, 246 | biimtrid 242 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
| 248 | 247 | expcom 413 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ (𝜑 →
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
| 249 | 248 | a2d 29 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 →
∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) → (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
| 250 | 9, 18, 27, 36, 79, 249 | nn0ind 12693 |
. . . 4
⊢ (𝑋 ∈ ℕ0
→ (𝜑 →
∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 251 | 250 | impcom 407 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) →
∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) |
| 252 | | fveq2 6881 |
. . . . 5
⊢ (𝑘 = 𝑌 → (𝐹‘𝑘) = (𝐹‘𝑌)) |
| 253 | 252 | breq1d 5134 |
. . . 4
⊢ (𝑘 = 𝑌 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)) ↔ (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 254 | 253 | rspccv 3603 |
. . 3
⊢
(∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)) → (𝑌 ∈ (0...((𝑀↑𝑋) − 1)) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 255 | 251, 254 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) → (𝑌 ∈ (0...((𝑀↑𝑋) − 1)) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
| 256 | 255 | 3impia 1117 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) |