Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑀↑𝑥) = (𝑀↑0)) |
2 | 1 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑀↑𝑥) − 1) = ((𝑀↑0) − 1)) |
3 | 2 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑥 = 0 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑0) − 1))) |
4 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0)) |
5 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑇↑𝑥) = (𝑇↑0)) |
6 | 4, 5 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 0) · (𝑇↑0))) |
7 | 6 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
8 | 3, 7 | raleqbidv 3336 |
. . . . . 6
⊢ (𝑥 = 0 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
9 | 8 | imbi2d 341 |
. . . . 5
⊢ (𝑥 = 0 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))))) |
10 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑀↑𝑥) = (𝑀↑𝑛)) |
11 | 10 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑀↑𝑥) − 1) = ((𝑀↑𝑛) − 1)) |
12 | 11 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑𝑛) − 1))) |
13 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑀 · 𝑥) = (𝑀 · 𝑛)) |
14 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑇↑𝑥) = (𝑇↑𝑛)) |
15 | 13, 14 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
16 | 15 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
17 | 12, 16 | raleqbidv 3336 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
18 | 17 | imbi2d 341 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))))) |
19 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑀↑𝑥) = (𝑀↑(𝑛 + 1))) |
20 | 19 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑀↑𝑥) − 1) = ((𝑀↑(𝑛 + 1)) − 1)) |
21 | 20 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑(𝑛 + 1)) − 1))) |
22 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑛 + 1))) |
23 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑇↑𝑥) = (𝑇↑(𝑛 + 1))) |
24 | 22, 23 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
25 | 24 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
26 | 21, 25 | raleqbidv 3336 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
27 | 26 | imbi2d 341 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
28 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀↑𝑥) = (𝑀↑𝑋)) |
29 | 28 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀↑𝑥) − 1) = ((𝑀↑𝑋) − 1)) |
30 | 29 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (0...((𝑀↑𝑥) − 1)) = (0...((𝑀↑𝑋) − 1))) |
31 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑀 · 𝑥) = (𝑀 · 𝑋)) |
32 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑇↑𝑥) = (𝑇↑𝑋)) |
33 | 31, 32 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑀 · 𝑥) · (𝑇↑𝑥)) = ((𝑀 · 𝑋) · (𝑇↑𝑋))) |
34 | 33 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ (𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
35 | 30, 34 | raleqbidv 3336 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥)) ↔ ∀𝑘 ∈ (0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
36 | 35 | imbi2d 341 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑥) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑥) · (𝑇↑𝑥))) ↔ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))))) |
37 | | ostth2.5 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘2)) |
38 | | eluz2nn 12624 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘2) → 𝑀 ∈ ℕ) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
40 | 39 | nncnd 11989 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℂ) |
41 | 40 | exp0d 13858 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀↑0) = 1) |
42 | 41 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀↑0) − 1) = (1 −
1)) |
43 | | 1m1e0 12045 |
. . . . . . . . . 10
⊢ (1
− 1) = 0 |
44 | 42, 43 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀↑0) − 1) = 0) |
45 | 44 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (0...((𝑀↑0) − 1)) =
(0...0)) |
46 | 45 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) ↔ 𝑘 ∈
(0...0))) |
47 | | 0le0 12074 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
48 | 47 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 0) |
49 | | ostth.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
50 | | qabsabv.a |
. . . . . . . . . . 11
⊢ 𝐴 = (AbsVal‘𝑄) |
51 | | qrng.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (ℂfld
↾s ℚ) |
52 | 51 | qrng0 26769 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑄) |
53 | 50, 52 | abv0 20091 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐴 → (𝐹‘0) = 0) |
54 | 49, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘0) = 0) |
55 | 40 | mul01d 11174 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 0) = 0) |
56 | 55 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = (0 · (𝑇↑0))) |
57 | | ostth2.7 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) |
58 | | 1re 10975 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
59 | | nnq 12702 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) |
60 | 39, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℚ) |
61 | 51 | qrngbas 26767 |
. . . . . . . . . . . . . . . . 17
⊢ ℚ =
(Base‘𝑄) |
62 | 50, 61 | abvcl 20084 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℝ) |
63 | 49, 60, 62 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
64 | | ifcl 4504 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ (𝐹‘𝑀) ∈ ℝ) → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
65 | 58, 63, 64 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ∈ ℝ) |
66 | 57, 65 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) |
67 | 66 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℂ) |
68 | | 0nn0 12248 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
69 | | expcl 13800 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝑇↑0) ∈ ℂ) |
70 | 67, 68, 69 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇↑0) ∈ ℂ) |
71 | 70 | mul02d 11173 |
. . . . . . . . . 10
⊢ (𝜑 → (0 · (𝑇↑0)) = 0) |
72 | 56, 71 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 0) · (𝑇↑0)) = 0) |
73 | 48, 54, 72 | 3brtr4d 5106 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0))) |
74 | | elfz1eq 13267 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...0) → 𝑘 = 0) |
75 | 74 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...0) → (𝐹‘𝑘) = (𝐹‘0)) |
76 | 75 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...0) → ((𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)) ↔ (𝐹‘0) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
77 | 73, 76 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...0) → (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
78 | 46, 77 | sylbid 239 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0...((𝑀↑0) − 1)) → (𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0)))) |
79 | 78 | ralrimiv 3102 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0...((𝑀↑0) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 0) · (𝑇↑0))) |
80 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
81 | 80 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ (𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
82 | 81 | cbvralvw 3383 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
83 | 49 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝐹 ∈ 𝐴) |
84 | | elfzelz 13256 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 𝑘 ∈ ℤ) |
85 | 84 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℤ) |
86 | | zq 12694 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℚ) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℚ) |
88 | 50, 61 | abvcl 20084 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑘 ∈ ℚ) → (𝐹‘𝑘) ∈ ℝ) |
89 | 83, 87, 88 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ∈ ℝ) |
90 | 39 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℕ) |
91 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℕ0) |
92 | 90, 91 | nnexpcld 13960 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℕ) |
93 | 85, 92 | zmodcld 13612 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈
ℕ0) |
94 | 93 | nn0zd 12424 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ ℤ) |
95 | | zq 12694 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 mod (𝑀↑𝑛)) ∈ ℤ → (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) |
97 | 50, 61 | abvcl 20084 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑘 mod (𝑀↑𝑛)) ∈ ℚ) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ∈ ℝ) |
98 | 83, 96, 97 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ∈ ℝ) |
99 | 90, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℚ) |
100 | 83, 99, 62 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ∈ ℝ) |
101 | 100, 91 | reexpcld 13881 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ∈ ℝ) |
102 | 85 | zred 12426 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℝ) |
103 | 102, 92 | nndivred 12027 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 / (𝑀↑𝑛)) ∈ ℝ) |
104 | 103 | flcld 13518 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℤ) |
105 | | zq 12694 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘(𝑘 /
(𝑀↑𝑛))) ∈ ℤ →
(⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) |
107 | 50, 61 | abvcl 20084 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝐴 ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℝ) |
108 | 83, 106, 107 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℝ) |
109 | 101, 108 | remulcld 11005 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ∈ ℝ) |
110 | 98, 109 | readdcld 11004 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ∈ ℝ) |
111 | 90 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℝ) |
112 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ) |
113 | 112 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈ ℕ) |
114 | 113 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈ ℝ) |
115 | 111, 114 | remulcld 11005 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℝ) |
116 | 66 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑇 ∈ ℝ) |
117 | | peano2nn0 12273 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
118 | 117 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈
ℕ0) |
119 | 116, 118 | reexpcld 13881 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑(𝑛 + 1)) ∈ ℝ) |
120 | 115, 119 | remulcld 11005 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))) ∈ ℝ) |
121 | | nnq 12702 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀↑𝑛) ∈ ℕ → (𝑀↑𝑛) ∈ ℚ) |
122 | 92, 121 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℚ) |
123 | | qmulcl 12707 |
. . . . . . . . . . . . . 14
⊢ (((𝑀↑𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) |
124 | 122, 106,
123 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) |
125 | | qex 12701 |
. . . . . . . . . . . . . . 15
⊢ ℚ
∈ V |
126 | | cnfldadd 20602 |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘ℂfld) |
127 | 51, 126 | ressplusg 17000 |
. . . . . . . . . . . . . . 15
⊢ (ℚ
∈ V → + = (+g‘𝑄)) |
128 | 125, 127 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑄) |
129 | 50, 61, 128 | abvtri 20090 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑘 mod (𝑀↑𝑛)) ∈ ℚ ∧ ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))))) |
130 | 83, 96, 124, 129 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))))) |
131 | 92 | nnrpd 12770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈
ℝ+) |
132 | | modval 13591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℝ ∧ (𝑀↑𝑛) ∈ ℝ+) → (𝑘 mod (𝑀↑𝑛)) = (𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
133 | 102, 131,
132 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) = (𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
134 | 133 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) |
135 | 102 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ ℂ) |
136 | | qcn 12703 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℚ → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
137 | 124, 136 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
138 | 135, 137 | npcand 11336 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 − ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = 𝑘) |
139 | 134, 138 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = 𝑘) |
140 | 139 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑘 mod (𝑀↑𝑛)) + ((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) = (𝐹‘𝑘)) |
141 | | cnfldmul 20603 |
. . . . . . . . . . . . . . . . . 18
⊢ ·
= (.r‘ℂfld) |
142 | 51, 141 | ressmulr 17017 |
. . . . . . . . . . . . . . . . 17
⊢ (ℚ
∈ V → · = (.r‘𝑄)) |
143 | 125, 142 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ·
= (.r‘𝑄) |
144 | 50, 61, 143 | abvmul 20089 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑀↑𝑛) ∈ ℚ ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℚ) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
145 | 83, 122, 106, 144 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
146 | 51, 50 | qabvexp 26774 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) |
147 | 83, 99, 91, 146 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) |
148 | 147 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑀↑𝑛)) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
149 | 145, 148 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛))))) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) |
150 | 149 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (𝐹‘((𝑀↑𝑛) · (⌊‘(𝑘 / (𝑀↑𝑛)))))) = ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))))) |
151 | 130, 140,
150 | 3brtr3d 5105 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ≤ ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))))) |
152 | 116, 91 | reexpcld 13881 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ∈ ℝ) |
153 | 115, 152 | remulcld 11005 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ∈ ℝ) |
154 | | nn0re 12242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
155 | 154 | ad2antlr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℝ) |
156 | 111, 155 | remulcld 11005 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 𝑛) ∈ ℝ) |
157 | 156, 152 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · 𝑛) · (𝑇↑𝑛)) ∈ ℝ) |
158 | 111, 152 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑇↑𝑛)) ∈ ℝ) |
159 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 mod (𝑀↑𝑛)) → (𝐹‘𝑗) = (𝐹‘(𝑘 mod (𝑀↑𝑛)))) |
160 | 159 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑘 mod (𝑀↑𝑛)) → ((𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) ↔ (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) |
161 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
162 | | zmodfz 13613 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ (𝑀↑𝑛) ∈ ℕ) → (𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1))) |
163 | 85, 92, 162 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 mod (𝑀↑𝑛)) ∈ (0...((𝑀↑𝑛) − 1))) |
164 | 160, 161,
163 | rspcdva 3562 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(𝑘 mod (𝑀↑𝑛))) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) |
165 | 111, 101 | remulcld 11005 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · ((𝐹‘𝑀)↑𝑛)) ∈ ℝ) |
166 | 101 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ∈ ℂ) |
167 | 108 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ∈ ℂ) |
168 | 166, 167 | mulcomd 10996 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) = ((𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) · ((𝐹‘𝑀)↑𝑛))) |
169 | 50, 61 | abvge0 20085 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → 0 ≤ (𝐹‘𝑀)) |
170 | 83, 99, 169 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ (𝐹‘𝑀)) |
171 | 100, 91, 170 | expge0d 13882 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ ((𝐹‘𝑀)↑𝑛)) |
172 | 104 | zred 12426 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℝ) |
173 | | elfzle1 13259 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) → 0 ≤ 𝑘) |
174 | 173 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ 𝑘) |
175 | 92 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑𝑛) ∈ ℝ) |
176 | 92 | nngt0d 12022 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 < (𝑀↑𝑛)) |
177 | | divge0 11844 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 ∈ ℝ ∧ 0 ≤
𝑘) ∧ ((𝑀↑𝑛) ∈ ℝ ∧ 0 < (𝑀↑𝑛))) → 0 ≤ (𝑘 / (𝑀↑𝑛))) |
178 | 102, 174,
175, 176, 177 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ (𝑘 / (𝑀↑𝑛))) |
179 | | flge0nn0 13540 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 / (𝑀↑𝑛)) ∈ ℝ ∧ 0 ≤ (𝑘 / (𝑀↑𝑛))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈
ℕ0) |
180 | 103, 178,
179 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ∈
ℕ0) |
181 | 51, 50 | qabvle 26773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ 𝐴 ∧ (⌊‘(𝑘 / (𝑀↑𝑛))) ∈ ℕ0) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ (⌊‘(𝑘 / (𝑀↑𝑛)))) |
182 | 83, 180, 181 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ (⌊‘(𝑘 / (𝑀↑𝑛)))) |
183 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) |
184 | | 0z 12330 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℤ |
185 | 90, 118 | nnexpcld 13960 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℕ) |
186 | 185 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) ∈ ℤ) |
187 | | elfzm11 13327 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((0
∈ ℤ ∧ (𝑀↑(𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1))))) |
188 | 184, 186,
187 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1))))) |
189 | 183, 188 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ∧ 𝑘 < (𝑀↑(𝑛 + 1)))) |
190 | 189 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 < (𝑀↑(𝑛 + 1))) |
191 | 90 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℂ) |
192 | 191, 91 | expp1d 13865 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀↑(𝑛 + 1)) = ((𝑀↑𝑛) · 𝑀)) |
193 | 190, 192 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑘 < ((𝑀↑𝑛) · 𝑀)) |
194 | | ltdivmul 11850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((𝑀↑𝑛) ∈ ℝ ∧ 0 < (𝑀↑𝑛))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ 𝑘 < ((𝑀↑𝑛) · 𝑀))) |
195 | 102, 111,
175, 176, 194 | syl112anc 1373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ 𝑘 < ((𝑀↑𝑛) · 𝑀))) |
196 | 193, 195 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑘 / (𝑀↑𝑛)) < 𝑀) |
197 | 90 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈ ℤ) |
198 | | fllt 13526 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑘 / (𝑀↑𝑛)) ∈ ℝ ∧ 𝑀 ∈ ℤ) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀)) |
199 | 103, 197,
198 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑘 / (𝑀↑𝑛)) < 𝑀 ↔ (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀)) |
200 | 196, 199 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) < 𝑀) |
201 | 172, 111,
200 | ltled 11123 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (⌊‘(𝑘 / (𝑀↑𝑛))) ≤ 𝑀) |
202 | 108, 172,
111, 182, 201 | letrd 11132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) ≤ 𝑀) |
203 | 108, 111,
101, 171, 202 | lemul1ad 11914 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))) · ((𝐹‘𝑀)↑𝑛)) ≤ (𝑀 · ((𝐹‘𝑀)↑𝑛))) |
204 | 168, 203 | eqbrtrd 5096 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ≤ (𝑀 · ((𝐹‘𝑀)↑𝑛))) |
205 | 90 | nnnn0d 12293 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑀 ∈
ℕ0) |
206 | 205 | nn0ge0d 12296 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 ≤ 𝑀) |
207 | | max1 12919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ (𝐹‘𝑀) ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
208 | 100, 58, 207 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
209 | 208, 57 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑀) ≤ 𝑇) |
210 | | leexp1a 13893 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑀) ∈ ℝ ∧ 𝑇 ∈ ℝ ∧ 𝑛 ∈ ℕ0) ∧ (0 ≤
(𝐹‘𝑀) ∧ (𝐹‘𝑀) ≤ 𝑇)) → ((𝐹‘𝑀)↑𝑛) ≤ (𝑇↑𝑛)) |
211 | 100, 116,
91, 170, 209, 210 | syl32anc 1377 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘𝑀)↑𝑛) ≤ (𝑇↑𝑛)) |
212 | 101, 152,
111, 206, 211 | lemul2ad 11915 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · ((𝐹‘𝑀)↑𝑛)) ≤ (𝑀 · (𝑇↑𝑛))) |
213 | 109, 165,
158, 204, 212 | letrd 11132 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛))))) ≤ (𝑀 · (𝑇↑𝑛))) |
214 | 98, 109, 157, 158, 164, 213 | le2addd 11594 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
215 | | nn0cn 12243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
216 | 215 | ad2antlr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℂ) |
217 | | 1cnd 10970 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ∈
ℂ) |
218 | 191, 216,
217 | adddid 10999 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
219 | 191 | mulid1d 10992 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 1) = 𝑀) |
220 | 219 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + 𝑀)) |
221 | 218, 220 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + 𝑀)) |
222 | 221 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) + 𝑀) · (𝑇↑𝑛))) |
223 | 191, 216 | mulcld 10995 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · 𝑛) ∈ ℂ) |
224 | 152 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ∈ ℂ) |
225 | 223, 191,
224 | adddird 11000 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (((𝑀 · 𝑛) + 𝑀) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
226 | 222, 225 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) = (((𝑀 · 𝑛) · (𝑇↑𝑛)) + (𝑀 · (𝑇↑𝑛)))) |
227 | 214, 226 | breqtrrd 5102 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛))) |
228 | | max2 12921 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ 1 ∈ ℝ)
→ 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
229 | 100, 58, 228 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ≤ if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀))) |
230 | 229, 57 | breqtrrdi 5116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 1 ≤ 𝑇) |
231 | | nn0z 12343 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
232 | 231 | ad2antlr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ ℤ) |
233 | | uzid 12597 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
234 | 232, 233 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 𝑛 ∈ (ℤ≥‘𝑛)) |
235 | | peano2uz 12641 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
236 | 234, 235 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
237 | 116, 230,
236 | leexp2ad 13971 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1))) |
238 | 90, 113 | nnmulcld 12026 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝑀 · (𝑛 + 1)) ∈ ℕ) |
239 | 238 | nngt0d 12022 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → 0 < (𝑀 · (𝑛 + 1))) |
240 | | lemul2 11828 |
. . . . . . . . . . . . . 14
⊢ (((𝑇↑𝑛) ∈ ℝ ∧ (𝑇↑(𝑛 + 1)) ∈ ℝ ∧ ((𝑀 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑀 · (𝑛 + 1)))) → ((𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
241 | 152, 119,
115, 239, 240 | syl112anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑇↑𝑛) ≤ (𝑇↑(𝑛 + 1)) ↔ ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
242 | 237, 241 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝑀 · (𝑛 + 1)) · (𝑇↑𝑛)) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
243 | 110, 153,
120, 227, 242 | letrd 11132 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → ((𝐹‘(𝑘 mod (𝑀↑𝑛))) + (((𝐹‘𝑀)↑𝑛) · (𝐹‘(⌊‘(𝑘 / (𝑀↑𝑛)))))) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
244 | 89, 110, 120, 151, 243 | letrd 11132 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ (𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1)) ∧ ∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)))) → (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))) |
245 | 244 | expr 457 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))) → (∀𝑗 ∈ (0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → (𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
246 | 245 | ralrimdva 3106 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∀𝑗 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑗) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
247 | 82, 246 | syl5bi 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1))))) |
248 | 247 | expcom 414 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ (𝜑 →
(∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛)) → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
249 | 248 | a2d 29 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝜑 →
∀𝑘 ∈
(0...((𝑀↑𝑛) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑛) · (𝑇↑𝑛))) → (𝜑 → ∀𝑘 ∈ (0...((𝑀↑(𝑛 + 1)) − 1))(𝐹‘𝑘) ≤ ((𝑀 · (𝑛 + 1)) · (𝑇↑(𝑛 + 1)))))) |
250 | 9, 18, 27, 36, 79, 249 | nn0ind 12415 |
. . . 4
⊢ (𝑋 ∈ ℕ0
→ (𝜑 →
∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
251 | 250 | impcom 408 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) →
∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) |
252 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = 𝑌 → (𝐹‘𝑘) = (𝐹‘𝑌)) |
253 | 252 | breq1d 5084 |
. . . 4
⊢ (𝑘 = 𝑌 → ((𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)) ↔ (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
254 | 253 | rspccv 3558 |
. . 3
⊢
(∀𝑘 ∈
(0...((𝑀↑𝑋) − 1))(𝐹‘𝑘) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)) → (𝑌 ∈ (0...((𝑀↑𝑋) − 1)) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
255 | 251, 254 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0) → (𝑌 ∈ (0...((𝑀↑𝑋) − 1)) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋)))) |
256 | 255 | 3impia 1116 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) |