Proof of Theorem trlval4
Step | Hyp | Ref
| Expression |
1 | | simp1 1133 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp21 1203 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝑇) |
3 | | simp22 1204 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simp23 1205 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
5 | | simp3r 1199 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄)) |
6 | | simpl1l 1221 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝐾 ∈ HL) |
7 | | simp23l 1291 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
8 | 7 | adantr 484 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝑄 ∈ 𝐴) |
9 | | simpl1 1188 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | | simpl21 1248 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝐹 ∈ 𝑇) |
11 | | trlval3.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
12 | | trlval3.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
13 | | trlval3.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | trlval3.t |
. . . . . . . . . 10
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
15 | 11, 12, 13, 14 | ltrnat 37716 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐹‘𝑄) ∈ 𝐴) |
16 | 9, 10, 8, 15 | syl3anc 1368 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝐹‘𝑄) ∈ 𝐴) |
17 | | trlval3.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
18 | 11, 17, 12 | hlatlej1 36951 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝐹‘𝑄) ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ (𝐹‘𝑄))) |
19 | 6, 8, 16, 18 | syl3anc 1368 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝑄 ≤ (𝑄 ∨ (𝐹‘𝑄))) |
20 | | simpl22 1249 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
21 | | trlval3.r |
. . . . . . . . . 10
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
22 | 11, 17, 12, 13, 14, 21 | trljat1 37742 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |
23 | 9, 10, 20, 22 | syl3anc 1368 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑃 ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |
24 | | simpr 488 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) |
25 | 23, 24 | eqtrd 2793 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑃 ∨ (𝑅‘𝐹)) = (𝑄 ∨ (𝐹‘𝑄))) |
26 | 19, 25 | breqtrrd 5060 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹))) |
27 | | simpl3r 1226 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄)) |
28 | | simpll1 1209 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | 20 | adantr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
30 | 10 | adantr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
31 | | simpr 488 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
32 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢
(0.‘𝐾) =
(0.‘𝐾) |
33 | 11, 32, 12, 13, 14, 21 | trl0 37746 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = (0.‘𝐾)) |
34 | 28, 29, 30, 31, 33 | syl112anc 1371 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑅‘𝐹) = (0.‘𝐾)) |
35 | | hlatl 36936 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
36 | 6, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝐾 ∈ AtLat) |
37 | | simp22l 1289 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
38 | 37 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝑃 ∈ 𝐴) |
39 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
40 | 39, 17, 12 | hlatjcl 36943 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
41 | 6, 38, 8, 40 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
42 | 39, 11, 32 | atl0le 36880 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ AtLat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) ≤ (𝑃 ∨ 𝑄)) |
43 | 36, 41, 42 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (0.‘𝐾) ≤ (𝑃 ∨ 𝑄)) |
44 | 43 | adantr 484 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → (0.‘𝐾) ≤ (𝑃 ∨ 𝑄)) |
45 | 34, 44 | eqbrtrd 5054 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) ∧ (𝐹‘𝑃) = 𝑃) → (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄)) |
46 | 45 | ex 416 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → ((𝐹‘𝑃) = 𝑃 → (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |
47 | 46 | necon3bd 2965 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) → (𝐹‘𝑃) ≠ 𝑃)) |
48 | 27, 47 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝐹‘𝑃) ≠ 𝑃) |
49 | 11, 12, 13, 14, 21 | trlat 37745 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
50 | 9, 20, 10, 48, 49 | syl112anc 1371 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑅‘𝐹) ∈ 𝐴) |
51 | | simpl3l 1225 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝑃 ≠ 𝑄) |
52 | 51 | necomd 3006 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → 𝑄 ≠ 𝑃) |
53 | 11, 17, 12 | hlatexch1 36971 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑅‘𝐹) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) → (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |
54 | 6, 8, 50, 38, 52, 53 | syl131anc 1380 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) → (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |
55 | 26, 54 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄))) → (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄)) |
56 | 55 | ex 416 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘𝑃)) = (𝑄 ∨ (𝐹‘𝑄)) → (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |
57 | 56 | necon3bd 2965 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → (¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) → (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) |
58 | 5, 57 | mpd 15 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄))) |
59 | | trlval3.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
60 | 11, 17, 59, 12, 13, 14, 21 | trlval3 37763 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∨ (𝐹‘𝑃)) ≠ (𝑄 ∨ (𝐹‘𝑄)))) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) |
61 | 1, 2, 3, 4, 58, 60 | syl113anc 1379 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ (𝑄 ∨ (𝐹‘𝑄)))) |