Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval4 Structured version   Visualization version   GIF version

Theorem trlval4 38202
Description: The value of the trace of a lattice translation in terms of 2 atoms. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l = (le‘𝐾)
trlval3.j = (join‘𝐾)
trlval3.m = (meet‘𝐾)
trlval3.a 𝐴 = (Atoms‘𝐾)
trlval3.h 𝐻 = (LHyp‘𝐾)
trlval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))

Proof of Theorem trlval4
StepHypRef Expression
1 simp1 1135 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1205 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝐹𝑇)
3 simp22 1206 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp23 1207 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp3r 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
6 simpl1l 1223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐾 ∈ HL)
7 simp23l 1293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝑄𝐴)
87adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄𝐴)
9 simpl1 1190 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simpl21 1250 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐹𝑇)
11 trlval3.l . . . . . . . . . 10 = (le‘𝐾)
12 trlval3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
13 trlval3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
14 trlval3.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
1511, 12, 13, 14ltrnat 38154 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
169, 10, 8, 15syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐹𝑄) ∈ 𝐴)
17 trlval3.j . . . . . . . . 9 = (join‘𝐾)
1811, 17, 12hlatlej1 37389 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → 𝑄 (𝑄 (𝐹𝑄)))
196, 8, 16, 18syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄 (𝑄 (𝐹𝑄)))
20 simpl22 1251 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 trlval3.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
2211, 17, 12, 13, 14, 21trljat1 38180 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
239, 10, 20, 22syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
24 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄)))
2523, 24eqtrd 2778 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
2619, 25breqtrrd 5102 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄 (𝑃 (𝑅𝐹)))
27 simpl3r 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
28 simpll1 1211 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2920adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3010adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
31 simpr 485 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
32 eqid 2738 . . . . . . . . . . . . . 14 (0.‘𝐾) = (0.‘𝐾)
3311, 32, 12, 13, 14, 21trl0 38184 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
3428, 29, 30, 31, 33syl112anc 1373 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
35 hlatl 37374 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
366, 35syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐾 ∈ AtLat)
37 simp22l 1291 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝑃𝐴)
3837adantr 481 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑃𝐴)
39 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4039, 17, 12hlatjcl 37381 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
416, 38, 8, 40syl3anc 1370 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4239, 11, 32atl0le 37318 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
4336, 41, 42syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (0.‘𝐾) (𝑃 𝑄))
4443adantr 481 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (0.‘𝐾) (𝑃 𝑄))
4534, 44eqbrtrd 5096 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) (𝑃 𝑄))
4645ex 413 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → ((𝐹𝑃) = 𝑃 → (𝑅𝐹) (𝑃 𝑄)))
4746necon3bd 2957 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (¬ (𝑅𝐹) (𝑃 𝑄) → (𝐹𝑃) ≠ 𝑃))
4827, 47mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐹𝑃) ≠ 𝑃)
4911, 12, 13, 14, 21trlat 38183 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
509, 20, 10, 48, 49syl112anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑅𝐹) ∈ 𝐴)
51 simpl3l 1227 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑃𝑄)
5251necomd 2999 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄𝑃)
5311, 17, 12hlatexch1 37409 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑅𝐹) (𝑃 𝑄)))
546, 8, 50, 38, 52, 53syl131anc 1382 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑅𝐹) (𝑃 𝑄)))
5526, 54mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑅𝐹) (𝑃 𝑄))
5655ex 413 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → ((𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄)) → (𝑅𝐹) (𝑃 𝑄)))
5756necon3bd 2957 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (¬ (𝑅𝐹) (𝑃 𝑄) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄))))
585, 57mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
59 trlval3.m . . 3 = (meet‘𝐾)
6011, 17, 59, 12, 13, 14, 21trlval3 38201 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
611, 2, 3, 4, 58, 60syl113anc 1381 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  0.cp0 18141  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemg10a  38654  cdlemg12d  38660
  Copyright terms: Public domain W3C validator