Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval4 Structured version   Visualization version   GIF version

Theorem trlval4 40182
Description: The value of the trace of a lattice translation in terms of 2 atoms. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l = (le‘𝐾)
trlval3.j = (join‘𝐾)
trlval3.m = (meet‘𝐾)
trlval3.a 𝐴 = (Atoms‘𝐾)
trlval3.h 𝐻 = (LHyp‘𝐾)
trlval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlval4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))

Proof of Theorem trlval4
StepHypRef Expression
1 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1207 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝐹𝑇)
3 simp22 1208 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp23 1209 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 simp3r 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
6 simpl1l 1225 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐾 ∈ HL)
7 simp23l 1295 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝑄𝐴)
87adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄𝐴)
9 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simpl21 1252 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐹𝑇)
11 trlval3.l . . . . . . . . . 10 = (le‘𝐾)
12 trlval3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
13 trlval3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
14 trlval3.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
1511, 12, 13, 14ltrnat 40134 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
169, 10, 8, 15syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐹𝑄) ∈ 𝐴)
17 trlval3.j . . . . . . . . 9 = (join‘𝐾)
1811, 17, 12hlatlej1 39368 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → 𝑄 (𝑄 (𝐹𝑄)))
196, 8, 16, 18syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄 (𝑄 (𝐹𝑄)))
20 simpl22 1253 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 trlval3.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
2211, 17, 12, 13, 14, 21trljat1 40160 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
239, 10, 20, 22syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
24 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄)))
2523, 24eqtrd 2764 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 (𝑅𝐹)) = (𝑄 (𝐹𝑄)))
2619, 25breqtrrd 5135 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄 (𝑃 (𝑅𝐹)))
27 simpl3r 1230 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
28 simpll1 1213 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2920adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3010adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
31 simpr 484 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
32 eqid 2729 . . . . . . . . . . . . . 14 (0.‘𝐾) = (0.‘𝐾)
3311, 32, 12, 13, 14, 21trl0 40164 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑅𝐹) = (0.‘𝐾))
3428, 29, 30, 31, 33syl112anc 1376 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) = (0.‘𝐾))
35 hlatl 39353 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
366, 35syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝐾 ∈ AtLat)
37 simp22l 1293 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → 𝑃𝐴)
3837adantr 480 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑃𝐴)
39 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
4039, 17, 12hlatjcl 39360 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
416, 38, 8, 40syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
4239, 11, 32atl0le 39297 . . . . . . . . . . . . . 14 ((𝐾 ∈ AtLat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (0.‘𝐾) (𝑃 𝑄))
4336, 41, 42syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (0.‘𝐾) (𝑃 𝑄))
4443adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (0.‘𝐾) (𝑃 𝑄))
4534, 44eqbrtrd 5129 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) ∧ (𝐹𝑃) = 𝑃) → (𝑅𝐹) (𝑃 𝑄))
4645ex 412 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → ((𝐹𝑃) = 𝑃 → (𝑅𝐹) (𝑃 𝑄)))
4746necon3bd 2939 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (¬ (𝑅𝐹) (𝑃 𝑄) → (𝐹𝑃) ≠ 𝑃))
4827, 47mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝐹𝑃) ≠ 𝑃)
4911, 12, 13, 14, 21trlat 40163 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
509, 20, 10, 48, 49syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑅𝐹) ∈ 𝐴)
51 simpl3l 1229 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑃𝑄)
5251necomd 2980 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → 𝑄𝑃)
5311, 17, 12hlatexch1 39389 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑅𝐹) (𝑃 𝑄)))
546, 8, 50, 38, 52, 53syl131anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑅𝐹) (𝑃 𝑄)))
5526, 54mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) ∧ (𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄))) → (𝑅𝐹) (𝑃 𝑄))
5655ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → ((𝑃 (𝐹𝑃)) = (𝑄 (𝐹𝑄)) → (𝑅𝐹) (𝑃 𝑄)))
5756necon3bd 2939 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (¬ (𝑅𝐹) (𝑃 𝑄) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄))))
585, 57mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))
59 trlval3.m . . 3 = (meet‘𝐾)
6011, 17, 59, 12, 13, 14, 21trlval3 40181 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃 (𝐹𝑃)) ≠ (𝑄 (𝐹𝑄)))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
611, 2, 3, 4, 58, 60syl113anc 1384 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄))) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) (𝑄 (𝐹𝑄))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  0.cp0 18382  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  cdlemg10a  40634  cdlemg12d  40640
  Copyright terms: Public domain W3C validator