MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq Structured version   Visualization version   GIF version

Theorem odeq 18670
Description: The oddvds 18667 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odeq ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Distinct variable groups:   𝑦,𝐺   𝑦, 0   𝑦,𝐴   𝑦,𝑁   𝑦,𝑂   𝑦, ·   𝑦,𝑋

Proof of Theorem odeq
StepHypRef Expression
1 nn0z 11993 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . . 8 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . . 8 · = (.g𝐺)
5 odid.4 . . . . . . . 8 0 = (0g𝐺)
62, 3, 4, 5oddvds 18667 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
71, 6syl3an3 1162 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
873expa 1115 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
98ralrimiva 3149 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
10 breq1 5033 . . . . . 6 (𝑁 = (𝑂𝐴) → (𝑁𝑦 ↔ (𝑂𝐴) ∥ 𝑦))
1110bibi1d 347 . . . . 5 (𝑁 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
1211ralbidv 3162 . . . 4 (𝑁 = (𝑂𝐴) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
139, 12syl5ibrcom 250 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
14133adant3 1129 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
15 simpl3 1190 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∈ ℕ0)
16 simpl2 1189 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝐴𝑋)
172, 3odcl 18656 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
1816, 17syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ0)
192, 3, 4, 5odid 18658 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
2016, 19syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) · 𝐴) = 0 )
21173ad2ant2 1131 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
22 breq2 5034 . . . . . . . 8 (𝑦 = (𝑂𝐴) → (𝑁𝑦𝑁 ∥ (𝑂𝐴)))
23 oveq1 7142 . . . . . . . . 9 (𝑦 = (𝑂𝐴) → (𝑦 · 𝐴) = ((𝑂𝐴) · 𝐴))
2423eqeq1d 2800 . . . . . . . 8 (𝑦 = (𝑂𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2522, 24bibi12d 349 . . . . . . 7 (𝑦 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 )))
2625rspcva 3569 . . . . . 6 (((𝑂𝐴) ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2721, 26sylan 583 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2820, 27mpbird 260 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∥ (𝑂𝐴))
29 nn0z 11993 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 iddvds 15615 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑁)
3115, 29, 303syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁𝑁)
32 breq2 5034 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑁𝑦𝑁𝑁))
33 oveq1 7142 . . . . . . . . . 10 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
3433eqeq1d 2800 . . . . . . . . 9 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
3532, 34bibi12d 349 . . . . . . . 8 (𝑦 = 𝑁 → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 )))
3635rspcva 3569 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
37363ad2antl3 1184 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
3831, 37mpbid 235 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
392, 3, 4, 5oddvds 18667 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4029, 39syl3an3 1162 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4140adantr 484 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4238, 41mpbird 260 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∥ 𝑁)
43 dvdseq 15656 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0) ∧ (𝑁 ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑁)) → 𝑁 = (𝑂𝐴))
4415, 18, 28, 42, 43syl22anc 837 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 = (𝑂𝐴))
4544ex 416 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) → 𝑁 = (𝑂𝐴)))
4614, 45impbid 215 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cn0 11885  cz 11969  cdvds 15599  Basecbs 16475  0gc0g 16705  Grpcgrp 18095  .gcmg 18216  odcod 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-od 18648
This theorem is referenced by:  odval2  18671  proot1ex  40145
  Copyright terms: Public domain W3C validator