MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq Structured version   Visualization version   GIF version

Theorem odeq 19592
Description: The oddvds 19589 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odeq ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Distinct variable groups:   𝑦,𝐺   𝑦, 0   𝑦,𝐴   𝑦,𝑁   𝑦,𝑂   𝑦, ·   𝑦,𝑋

Proof of Theorem odeq
StepHypRef Expression
1 nn0z 12664 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . . 8 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . . 8 · = (.g𝐺)
5 odid.4 . . . . . . . 8 0 = (0g𝐺)
62, 3, 4, 5oddvds 19589 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
71, 6syl3an3 1165 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
873expa 1118 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
98ralrimiva 3152 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
10 breq1 5169 . . . . . 6 (𝑁 = (𝑂𝐴) → (𝑁𝑦 ↔ (𝑂𝐴) ∥ 𝑦))
1110bibi1d 343 . . . . 5 (𝑁 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
1211ralbidv 3184 . . . 4 (𝑁 = (𝑂𝐴) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
139, 12syl5ibrcom 247 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
14133adant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
15 simpl3 1193 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∈ ℕ0)
16 simpl2 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝐴𝑋)
172, 3odcl 19578 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
1816, 17syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ0)
192, 3, 4, 5odid 19580 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
2016, 19syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) · 𝐴) = 0 )
21173ad2ant2 1134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
22 breq2 5170 . . . . . . . 8 (𝑦 = (𝑂𝐴) → (𝑁𝑦𝑁 ∥ (𝑂𝐴)))
23 oveq1 7455 . . . . . . . . 9 (𝑦 = (𝑂𝐴) → (𝑦 · 𝐴) = ((𝑂𝐴) · 𝐴))
2423eqeq1d 2742 . . . . . . . 8 (𝑦 = (𝑂𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2522, 24bibi12d 345 . . . . . . 7 (𝑦 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 )))
2625rspcva 3633 . . . . . 6 (((𝑂𝐴) ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2721, 26sylan 579 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2820, 27mpbird 257 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∥ (𝑂𝐴))
29 nn0z 12664 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 iddvds 16318 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑁)
3115, 29, 303syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁𝑁)
32 breq2 5170 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑁𝑦𝑁𝑁))
33 oveq1 7455 . . . . . . . . . 10 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
3433eqeq1d 2742 . . . . . . . . 9 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
3532, 34bibi12d 345 . . . . . . . 8 (𝑦 = 𝑁 → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 )))
3635rspcva 3633 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
37363ad2antl3 1187 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
3831, 37mpbid 232 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
392, 3, 4, 5oddvds 19589 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4029, 39syl3an3 1165 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4140adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4238, 41mpbird 257 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∥ 𝑁)
43 dvdseq 16362 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0) ∧ (𝑁 ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑁)) → 𝑁 = (𝑂𝐴))
4415, 18, 28, 42, 43syl22anc 838 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 = (𝑂𝐴))
4544ex 412 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) → 𝑁 = (𝑂𝐴)))
4614, 45impbid 212 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cn0 12553  cz 12639  cdvds 16302  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  .gcmg 19107  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-od 19570
This theorem is referenced by:  odval2  19593  ply1chr  22331  proot1ex  43157
  Copyright terms: Public domain W3C validator