Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq Structured version   Visualization version   GIF version

Theorem odeq 18657
 Description: The oddvds 18654 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odeq ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Distinct variable groups:   𝑦,𝐺   𝑦, 0   𝑦,𝐴   𝑦,𝑁   𝑦,𝑂   𝑦, ·   𝑦,𝑋

Proof of Theorem odeq
StepHypRef Expression
1 nn0z 11983 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . . 8 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . . 8 · = (.g𝐺)
5 odid.4 . . . . . . . 8 0 = (0g𝐺)
62, 3, 4, 5oddvds 18654 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
71, 6syl3an3 1162 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
873expa 1115 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
98ralrimiva 3170 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
10 breq1 5042 . . . . . 6 (𝑁 = (𝑂𝐴) → (𝑁𝑦 ↔ (𝑂𝐴) ∥ 𝑦))
1110bibi1d 347 . . . . 5 (𝑁 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
1211ralbidv 3185 . . . 4 (𝑁 = (𝑂𝐴) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
139, 12syl5ibrcom 250 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
14133adant3 1129 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
15 simpl3 1190 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∈ ℕ0)
16 simpl2 1189 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝐴𝑋)
172, 3odcl 18643 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
1816, 17syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ0)
192, 3, 4, 5odid 18645 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
2016, 19syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) · 𝐴) = 0 )
21173ad2ant2 1131 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
22 breq2 5043 . . . . . . . 8 (𝑦 = (𝑂𝐴) → (𝑁𝑦𝑁 ∥ (𝑂𝐴)))
23 oveq1 7137 . . . . . . . . 9 (𝑦 = (𝑂𝐴) → (𝑦 · 𝐴) = ((𝑂𝐴) · 𝐴))
2423eqeq1d 2823 . . . . . . . 8 (𝑦 = (𝑂𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2522, 24bibi12d 349 . . . . . . 7 (𝑦 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 )))
2625rspcva 3598 . . . . . 6 (((𝑂𝐴) ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2721, 26sylan 583 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2820, 27mpbird 260 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∥ (𝑂𝐴))
29 nn0z 11983 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 iddvds 15602 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑁)
3115, 29, 303syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁𝑁)
32 breq2 5043 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑁𝑦𝑁𝑁))
33 oveq1 7137 . . . . . . . . . 10 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
3433eqeq1d 2823 . . . . . . . . 9 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
3532, 34bibi12d 349 . . . . . . . 8 (𝑦 = 𝑁 → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 )))
3635rspcva 3598 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
37363ad2antl3 1184 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
3831, 37mpbid 235 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
392, 3, 4, 5oddvds 18654 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4029, 39syl3an3 1162 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4140adantr 484 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4238, 41mpbird 260 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∥ 𝑁)
43 dvdseq 15643 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0) ∧ (𝑁 ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑁)) → 𝑁 = (𝑂𝐴))
4415, 18, 28, 42, 43syl22anc 837 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 = (𝑂𝐴))
4544ex 416 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) → 𝑁 = (𝑂𝐴)))
4614, 45impbid 215 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3126   class class class wbr 5039  ‘cfv 6328  (class class class)co 7130  ℕ0cn0 11875  ℤcz 11959   ∥ cdvds 15586  Basecbs 16462  0gc0g 16692  Grpcgrp 18082  .gcmg 18203  odcod 18631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-dvds 15587  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-od 18635 This theorem is referenced by:  odval2  18658  proot1ex  39952
 Copyright terms: Public domain W3C validator