MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq Structured version   Visualization version   GIF version

Theorem odeq 19536
Description: The oddvds 19533 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odeq ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Distinct variable groups:   𝑦,𝐺   𝑦, 0   𝑦,𝐴   𝑦,𝑁   𝑦,𝑂   𝑦, ·   𝑦,𝑋

Proof of Theorem odeq
StepHypRef Expression
1 nn0z 12618 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . . 8 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . . 8 · = (.g𝐺)
5 odid.4 . . . . . . . 8 0 = (0g𝐺)
62, 3, 4, 5oddvds 19533 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
71, 6syl3an3 1165 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
873expa 1118 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
98ralrimiva 3133 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
10 breq1 5127 . . . . . 6 (𝑁 = (𝑂𝐴) → (𝑁𝑦 ↔ (𝑂𝐴) ∥ 𝑦))
1110bibi1d 343 . . . . 5 (𝑁 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
1211ralbidv 3164 . . . 4 (𝑁 = (𝑂𝐴) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
139, 12syl5ibrcom 247 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
14133adant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
15 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∈ ℕ0)
16 simpl2 1193 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝐴𝑋)
172, 3odcl 19522 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
1816, 17syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ0)
192, 3, 4, 5odid 19524 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
2016, 19syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) · 𝐴) = 0 )
21173ad2ant2 1134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
22 breq2 5128 . . . . . . . 8 (𝑦 = (𝑂𝐴) → (𝑁𝑦𝑁 ∥ (𝑂𝐴)))
23 oveq1 7417 . . . . . . . . 9 (𝑦 = (𝑂𝐴) → (𝑦 · 𝐴) = ((𝑂𝐴) · 𝐴))
2423eqeq1d 2738 . . . . . . . 8 (𝑦 = (𝑂𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2522, 24bibi12d 345 . . . . . . 7 (𝑦 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 )))
2625rspcva 3604 . . . . . 6 (((𝑂𝐴) ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2721, 26sylan 580 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2820, 27mpbird 257 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∥ (𝑂𝐴))
29 nn0z 12618 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 iddvds 16294 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑁)
3115, 29, 303syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁𝑁)
32 breq2 5128 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑁𝑦𝑁𝑁))
33 oveq1 7417 . . . . . . . . . 10 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
3433eqeq1d 2738 . . . . . . . . 9 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
3532, 34bibi12d 345 . . . . . . . 8 (𝑦 = 𝑁 → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 )))
3635rspcva 3604 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
37363ad2antl3 1188 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
3831, 37mpbid 232 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
392, 3, 4, 5oddvds 19533 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4029, 39syl3an3 1165 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4140adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4238, 41mpbird 257 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∥ 𝑁)
43 dvdseq 16338 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0) ∧ (𝑁 ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑁)) → 𝑁 = (𝑂𝐴))
4415, 18, 28, 42, 43syl22anc 838 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 = (𝑂𝐴))
4544ex 412 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) → 𝑁 = (𝑂𝐴)))
4614, 45impbid 212 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cn0 12506  cz 12593  cdvds 16277  Basecbs 17233  0gc0g 17458  Grpcgrp 18921  .gcmg 19055  odcod 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-od 19514
This theorem is referenced by:  odval2  19537  ply1chr  22249  proot1ex  43187
  Copyright terms: Public domain W3C validator