MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odeq Structured version   Visualization version   GIF version

Theorem odeq 19470
Description: The oddvds 19467 property uniquely defines the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odeq ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Distinct variable groups:   𝑦,𝐺   𝑦, 0   𝑦,𝐴   𝑦,𝑁   𝑦,𝑂   𝑦, ·   𝑦,𝑋

Proof of Theorem odeq
StepHypRef Expression
1 nn0z 12503 . . . . . . 7 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
2 odcl.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
3 odcl.2 . . . . . . . 8 𝑂 = (od‘𝐺)
4 odid.3 . . . . . . . 8 · = (.g𝐺)
5 odid.4 . . . . . . . 8 0 = (0g𝐺)
62, 3, 4, 5oddvds 19467 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
71, 6syl3an3 1165 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
873expa 1118 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
98ralrimiva 3125 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 ))
10 breq1 5098 . . . . . 6 (𝑁 = (𝑂𝐴) → (𝑁𝑦 ↔ (𝑂𝐴) ∥ 𝑦))
1110bibi1d 343 . . . . 5 (𝑁 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
1211ralbidv 3156 . . . 4 (𝑁 = (𝑂𝐴) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ ∀𝑦 ∈ ℕ0 ((𝑂𝐴) ∥ 𝑦 ↔ (𝑦 · 𝐴) = 0 )))
139, 12syl5ibrcom 247 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
14133adant3 1132 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) → ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
15 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∈ ℕ0)
16 simpl2 1193 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝐴𝑋)
172, 3odcl 19456 . . . . 5 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
1816, 17syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ0)
192, 3, 4, 5odid 19458 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
2016, 19syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) · 𝐴) = 0 )
21173ad2ant2 1134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑂𝐴) ∈ ℕ0)
22 breq2 5099 . . . . . . . 8 (𝑦 = (𝑂𝐴) → (𝑁𝑦𝑁 ∥ (𝑂𝐴)))
23 oveq1 7362 . . . . . . . . 9 (𝑦 = (𝑂𝐴) → (𝑦 · 𝐴) = ((𝑂𝐴) · 𝐴))
2423eqeq1d 2735 . . . . . . . 8 (𝑦 = (𝑂𝐴) → ((𝑦 · 𝐴) = 0 ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2522, 24bibi12d 345 . . . . . . 7 (𝑦 = (𝑂𝐴) → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 )))
2625rspcva 3571 . . . . . 6 (((𝑂𝐴) ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2721, 26sylan 580 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 ∥ (𝑂𝐴) ↔ ((𝑂𝐴) · 𝐴) = 0 ))
2820, 27mpbird 257 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 ∥ (𝑂𝐴))
29 nn0z 12503 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 iddvds 16187 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑁)
3115, 29, 303syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁𝑁)
32 breq2 5099 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑁𝑦𝑁𝑁))
33 oveq1 7362 . . . . . . . . . 10 (𝑦 = 𝑁 → (𝑦 · 𝐴) = (𝑁 · 𝐴))
3433eqeq1d 2735 . . . . . . . . 9 (𝑦 = 𝑁 → ((𝑦 · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
3532, 34bibi12d 345 . . . . . . . 8 (𝑦 = 𝑁 → ((𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 )))
3635rspcva 3571 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
37363ad2antl3 1188 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁𝑁 ↔ (𝑁 · 𝐴) = 0 ))
3831, 37mpbid 232 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑁 · 𝐴) = 0 )
392, 3, 4, 5oddvds 19467 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4029, 39syl3an3 1165 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4140adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
4238, 41mpbird 257 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → (𝑂𝐴) ∥ 𝑁)
43 dvdseq 16232 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℕ0) ∧ (𝑁 ∥ (𝑂𝐴) ∧ (𝑂𝐴) ∥ 𝑁)) → 𝑁 = (𝑂𝐴))
4415, 18, 28, 42, 43syl22anc 838 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) ∧ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )) → 𝑁 = (𝑂𝐴))
4544ex 412 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 ) → 𝑁 = (𝑂𝐴)))
4614, 45impbid 212 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℕ0) → (𝑁 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑁𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  cfv 6489  (class class class)co 7355  0cn0 12392  cz 12479  cdvds 16170  Basecbs 17127  0gc0g 17350  Grpcgrp 18854  .gcmg 18988  odcod 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-od 19448
This theorem is referenced by:  odval2  19471  ply1chr  22241  proot1ex  43353
  Copyright terms: Public domain W3C validator