MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlkn Structured version   Visualization version   GIF version

Theorem eleclclwwlkn 28341
Description: A member of an equivalence class according to . (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eleclclwwlkn ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡)   𝑋(𝑢,𝑡)   𝑌(𝑢,𝑡)

Proof of Theorem eleclclwwlkn
Dummy variables 𝑥 𝑦 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 28340 . . . 4 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 eqeq1 2742 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑛)))
54rexbidv 3225 . . . . . . . . 9 (𝑦 = 𝑌 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
65elrab 3617 . . . . . . . 8 (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
7 oveq2 7263 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑘))
87eqeq2d 2749 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑌 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑘)))
98cbvrexvw 3373 . . . . . . . . . 10 (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘))
10 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑛)))
1110rexbidv 3225 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
1211elrab 3617 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
13 oveq2 7263 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
1413eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑋 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑚)))
1514cbvrexvw 3373 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚))
161eleclclwwlknlem2 28326 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
1716ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1817rexlimiva 3209 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1915, 18sylbi 216 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2019expd 415 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → (𝑋𝑊 → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
2120impcom 407 . . . . . . . . . . . . . 14 ((𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)) → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2212, 21sylbi 216 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2322com12 32 . . . . . . . . . . . 12 (𝑥𝑊 → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2423ad2antlr 723 . . . . . . . . . . 11 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2524imp 406 . . . . . . . . . 10 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
269, 25syl5bb 282 . . . . . . . . 9 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
2726anbi2d 628 . . . . . . . 8 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)) ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
286, 27syl5bb 282 . . . . . . 7 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2928ex 412 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
30 eleq2 2827 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
31 eleq2 2827 . . . . . . . . 9 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌𝐵𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
3231bibi1d 343 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) ↔ (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3330, 32imbi12d 344 . . . . . . 7 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3433adantl 481 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3529, 34mpbird 256 . . . . 5 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3635rexlimdva2 3215 . . . 4 (𝐵 ∈ (𝑊 / ) → (∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
373, 36sylbid 239 . . 3 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3837pm2.43i 52 . 2 (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3938imp 406 1 ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  {copab 5132  (class class class)co 7255   / cqs 8455  0cc0 10802  ...cfz 13168   cyclShift ccsh 14429   ClWWalksN cclwwlkn 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430  df-clwwlk 28247  df-clwwlkn 28290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator