Step | Hyp | Ref
| Expression |
1 | | erclwwlkn.w |
. . . . 5
⊢ 𝑊 = (𝑁 ClWWalksN 𝐺) |
2 | | erclwwlkn.r |
. . . . 5
⊢ ∼ =
{〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
3 | 1, 2 | eclclwwlkn1 28447 |
. . . 4
⊢ (𝐵 ∈ (𝑊 / ∼ ) → (𝐵 ∈ (𝑊 / ∼ ) ↔
∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
4 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑌 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑛))) |
5 | 4 | rexbidv 3224 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛))) |
6 | 5 | elrab 3623 |
. . . . . . . 8
⊢ (𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛))) |
7 | | oveq2 7275 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑘)) |
8 | 7 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑌 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑘))) |
9 | 8 | cbvrexvw 3381 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
(0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘)) |
10 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑋 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑛))) |
11 | 10 | rexbidv 3224 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑋 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛))) |
12 | 11 | elrab 3623 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑋 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛))) |
13 | | oveq2 7275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚)) |
14 | 13 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → (𝑋 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑚))) |
15 | 14 | cbvrexvw 3381 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑛 ∈
(0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚)) |
16 | 1 | eleclclwwlknlem2 28433 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) |
17 | 16 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
18 | 17 | rexlimiva 3208 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑚 ∈
(0...𝑁)𝑋 = (𝑥 cyclShift 𝑚) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
19 | 15, 18 | sylbi 216 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑛 ∈
(0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
20 | 19 | expd 416 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑛 ∈
(0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → (𝑋 ∈ 𝑊 → (𝑥 ∈ 𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))) |
21 | 20 | impcom 408 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)) → (𝑥 ∈ 𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
22 | 12, 21 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑥 ∈ 𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
23 | 22 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑊 → (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
24 | 23 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
25 | 24 | imp 407 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) |
26 | 9, 25 | syl5bb 283 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) |
27 | 26 | anbi2d 629 |
. . . . . . . 8
⊢ ((((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)) ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
28 | 6, 27 | syl5bb 283 |
. . . . . . 7
⊢ ((((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |
29 | 28 | ex 413 |
. . . . . 6
⊢ (((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))) |
30 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
31 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})) |
32 | 31 | bibi1d 344 |
. . . . . . . 8
⊢ (𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) ↔ (𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))) |
33 | 30, 32 | imbi12d 345 |
. . . . . . 7
⊢ (𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))) |
34 | 33 | adantl 482 |
. . . . . 6
⊢ (((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))) |
35 | 29, 34 | mpbird 256 |
. . . . 5
⊢ (((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑥 ∈ 𝑊) ∧ 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))) |
36 | 35 | rexlimdva2 3214 |
. . . 4
⊢ (𝐵 ∈ (𝑊 / ∼ ) →
(∃𝑥 ∈ 𝑊 𝐵 = {𝑦 ∈ 𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))) |
37 | 3, 36 | sylbid 239 |
. . 3
⊢ (𝐵 ∈ (𝑊 / ∼ ) → (𝐵 ∈ (𝑊 / ∼ ) → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))) |
38 | 37 | pm2.43i 52 |
. 2
⊢ (𝐵 ∈ (𝑊 / ∼ ) → (𝑋 ∈ 𝐵 → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))) |
39 | 38 | imp 407 |
1
⊢ ((𝐵 ∈ (𝑊 / ∼ ) ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ 𝐵 ↔ (𝑌 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) |