MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlkn Structured version   Visualization version   GIF version

Theorem eleclclwwlkn 29593
Description: A member of an equivalence class according to . (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eleclclwwlkn ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡)   𝑋(𝑢,𝑡)   𝑌(𝑢,𝑡)

Proof of Theorem eleclclwwlkn
Dummy variables 𝑥 𝑦 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 29592 . . . 4 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 eqeq1 2735 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑛)))
54rexbidv 3177 . . . . . . . . 9 (𝑦 = 𝑌 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
65elrab 3684 . . . . . . . 8 (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
7 oveq2 7420 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑘))
87eqeq2d 2742 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑌 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑘)))
98cbvrexvw 3234 . . . . . . . . . 10 (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘))
10 eqeq1 2735 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑛)))
1110rexbidv 3177 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
1211elrab 3684 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
13 oveq2 7420 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
1413eqeq2d 2742 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑋 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑚)))
1514cbvrexvw 3234 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚))
161eleclclwwlknlem2 29578 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
1716ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1817rexlimiva 3146 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1915, 18sylbi 216 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2019expd 415 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → (𝑋𝑊 → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
2120impcom 407 . . . . . . . . . . . . . 14 ((𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)) → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2212, 21sylbi 216 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2322com12 32 . . . . . . . . . . . 12 (𝑥𝑊 → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2423ad2antlr 724 . . . . . . . . . . 11 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2524imp 406 . . . . . . . . . 10 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
269, 25bitrid 282 . . . . . . . . 9 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
2726anbi2d 628 . . . . . . . 8 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)) ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
286, 27bitrid 282 . . . . . . 7 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2928ex 412 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
30 eleq2 2821 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
31 eleq2 2821 . . . . . . . . 9 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌𝐵𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
3231bibi1d 342 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) ↔ (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3330, 32imbi12d 343 . . . . . . 7 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3433adantl 481 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3529, 34mpbird 256 . . . . 5 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3635rexlimdva2 3156 . . . 4 (𝐵 ∈ (𝑊 / ) → (∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
373, 36sylbid 239 . . 3 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3837pm2.43i 52 . 2 (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3938imp 406 1 ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  {crab 3431  {copab 5211  (class class class)co 7412   / cqs 8705  0cc0 11113  ...cfz 13489   cyclShift ccsh 14743   ClWWalksN cclwwlkn 29541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-ec 8708  df-qs 8712  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-inf 9441  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-hash 14296  df-word 14470  df-concat 14526  df-substr 14596  df-pfx 14626  df-csh 14744  df-clwwlk 29499  df-clwwlkn 29542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator