MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlkn Structured version   Visualization version   GIF version

Theorem eleclclwwlkn 27782
Description: A member of an equivalence class according to . (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eleclclwwlkn ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡)   𝑋(𝑢,𝑡)   𝑌(𝑢,𝑡)

Proof of Theorem eleclclwwlkn
Dummy variables 𝑥 𝑦 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 27781 . . . 4 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 eqeq1 2822 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑛)))
54rexbidv 3294 . . . . . . . . 9 (𝑦 = 𝑌 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
65elrab 3677 . . . . . . . 8 (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
7 oveq2 7153 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑘))
87eqeq2d 2829 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑌 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑘)))
98cbvrexvw 3448 . . . . . . . . . 10 (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘))
10 eqeq1 2822 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑛)))
1110rexbidv 3294 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
1211elrab 3677 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
13 oveq2 7153 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
1413eqeq2d 2829 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑋 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑚)))
1514cbvrexvw 3448 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚))
161eleclclwwlknlem2 27767 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
1716ex 413 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1817rexlimiva 3278 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1915, 18sylbi 218 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2019expd 416 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → (𝑋𝑊 → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
2120impcom 408 . . . . . . . . . . . . . 14 ((𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)) → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2212, 21sylbi 218 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2322com12 32 . . . . . . . . . . . 12 (𝑥𝑊 → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2423ad2antlr 723 . . . . . . . . . . 11 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2524imp 407 . . . . . . . . . 10 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
269, 25syl5bb 284 . . . . . . . . 9 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
2726anbi2d 628 . . . . . . . 8 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)) ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
286, 27syl5bb 284 . . . . . . 7 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2928ex 413 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
30 eleq2 2898 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
31 eleq2 2898 . . . . . . . . 9 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌𝐵𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
3231bibi1d 345 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) ↔ (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3330, 32imbi12d 346 . . . . . . 7 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3433adantl 482 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3529, 34mpbird 258 . . . . 5 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3635rexlimdva2 3284 . . . 4 (𝐵 ∈ (𝑊 / ) → (∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
373, 36sylbid 241 . . 3 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3837pm2.43i 52 . 2 (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3938imp 407 1 ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  {copab 5119  (class class class)co 7145   / cqs 8277  0cc0 10525  ...cfz 12880   cyclShift ccsh 14138   ClWWalksN cclwwlkn 27729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-hash 13679  df-word 13850  df-concat 13911  df-substr 13991  df-pfx 14021  df-csh 14139  df-clwwlk 27687  df-clwwlkn 27730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator