MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlkn Structured version   Visualization version   GIF version

Theorem eleclclwwlkn 30012
Description: A member of an equivalence class according to . (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
eleclclwwlkn ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝐵(𝑢,𝑡,𝑛)   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡)   𝑋(𝑢,𝑡)   𝑌(𝑢,𝑡)

Proof of Theorem eleclclwwlkn
Dummy variables 𝑥 𝑦 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlkn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlkn1 30011 . . . 4 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 eqeq1 2734 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑛)))
54rexbidv 3158 . . . . . . . . 9 (𝑦 = 𝑌 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
65elrab 3662 . . . . . . . 8 (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)))
7 oveq2 7398 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑘))
87eqeq2d 2741 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑌 = (𝑥 cyclShift 𝑛) ↔ 𝑌 = (𝑥 cyclShift 𝑘)))
98cbvrexvw 3217 . . . . . . . . . 10 (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘))
10 eqeq1 2734 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑛)))
1110rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑦 = 𝑋 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
1211elrab 3662 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)))
13 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
1413eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑋 = (𝑥 cyclShift 𝑛) ↔ 𝑋 = (𝑥 cyclShift 𝑚)))
1514cbvrexvw 3217 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚))
161eleclclwwlknlem2 29997 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
1716ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑚)) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1817rexlimiva 3127 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑚) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
1915, 18sylbi 217 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → ((𝑋𝑊𝑥𝑊) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2019expd 415 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛) → (𝑋𝑊 → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
2120impcom 407 . . . . . . . . . . . . . 14 ((𝑋𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑋 = (𝑥 cyclShift 𝑛)) → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2212, 21sylbi 217 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑥𝑊 → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2322com12 32 . . . . . . . . . . . 12 (𝑥𝑊 → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2423ad2antlr 727 . . . . . . . . . . 11 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2524imp 406 . . . . . . . . . 10 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑘 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑘) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
269, 25bitrid 283 . . . . . . . . 9 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
2726anbi2d 630 . . . . . . . 8 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑛)) ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
286, 27bitrid 283 . . . . . . 7 ((((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) ∧ 𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
2928ex 412 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
30 eleq2 2818 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
31 eleq2 2818 . . . . . . . . 9 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌𝐵𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
3231bibi1d 343 . . . . . . . 8 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))) ↔ (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3330, 32imbi12d 344 . . . . . . 7 (𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3433adantl 481 . . . . . 6 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → ((𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))) ↔ (𝑋 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑌 ∈ {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3529, 34mpbird 257 . . . . 5 (((𝐵 ∈ (𝑊 / ) ∧ 𝑥𝑊) ∧ 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3635rexlimdva2 3137 . . . 4 (𝐵 ∈ (𝑊 / ) → (∃𝑥𝑊 𝐵 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
373, 36sylbid 240 . . 3 (𝐵 ∈ (𝑊 / ) → (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))))
3837pm2.43i 52 . 2 (𝐵 ∈ (𝑊 / ) → (𝑋𝐵 → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))))
3938imp 406 1 ((𝐵 ∈ (𝑊 / ) ∧ 𝑋𝐵) → (𝑌𝐵 ↔ (𝑌𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  {copab 5172  (class class class)co 7390   / cqs 8673  0cc0 11075  ...cfz 13475   cyclShift ccsh 14760   ClWWalksN cclwwlkn 29960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-csh 14761  df-clwwlk 29918  df-clwwlkn 29961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator