Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycldlenngric Structured version   Visualization version   GIF version

Theorem cycldlenngric 48027
Description: Two simple pseudographs are not isomorphic if one has a cycle and the other has no cycle of the same length. (Contributed by AV, 6-Nov-2025.)
Assertion
Ref Expression
cycldlenngric ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺𝑔𝑟 𝐻))
Distinct variable groups:   𝑓,𝐺,𝑝   𝑓,𝐻,𝑝   𝑓,𝑁,𝑝

Proof of Theorem cycldlenngric
Dummy variables 𝑔 𝑖 𝑗 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgric 48011 . . . . . . . 8 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0rex 4304 . . . . . . . . 9 ((𝐺 GraphIso 𝐻) ≠ ∅ → ∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻))
3 eqid 2731 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2731 . . . . . . . . . . . . 13 (iEdg‘𝐻) = (iEdg‘𝐻)
5 simprll 778 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐺 ∈ USPGraph)
6 simprlr 779 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐻 ∈ USPGraph)
7 simpl 482 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑖 ∈ (𝐺 GraphIso 𝐻))
8 2fveq3 6827 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((iEdg‘𝐺)‘(𝑓𝑥)) = ((iEdg‘𝐺)‘(𝑓𝑗)))
98imaeq2d 6008 . . . . . . . . . . . . . . 15 (𝑥 = 𝑗 → (𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))) = (𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗))))
109fveq2d 6826 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))) = ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗)))))
1110cbvmptv 5193 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) = (𝑗 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗)))))
12 cycliswlk 29776 . . . . . . . . . . . . . . 15 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
1312ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → 𝑓(Walks‘𝐺)𝑝)
1413adantl 481 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Walks‘𝐺)𝑝)
153, 4, 5, 6, 7, 11, 14upgrimwlklen 48002 . . . . . . . . . . . 12 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)))
16 simprrl 780 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Cycles‘𝐺)𝑝)
173, 4, 5, 6, 7, 11, 16upgrimcycls 48010 . . . . . . . . . . . 12 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝))
18 simp3 1138 . . . . . . . . . . . . 13 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝))
19 simp2r 1201 . . . . . . . . . . . . . 14 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓))
20 simprrr 781 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (♯‘𝑓) = 𝑁)
21203ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘𝑓) = 𝑁)
2219, 21eqtrd 2766 . . . . . . . . . . . . 13 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁)
23 vex 3440 . . . . . . . . . . . . . . 15 𝑖 ∈ V
24 vex 3440 . . . . . . . . . . . . . . 15 𝑝 ∈ V
2523, 24coex 7860 . . . . . . . . . . . . . 14 (𝑖𝑝) ∈ V
26 vex 3440 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
2726dmex 7839 . . . . . . . . . . . . . . 15 dom 𝑓 ∈ V
2827mptex 7157 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) ∈ V
29 breq12 5094 . . . . . . . . . . . . . . . 16 ((𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) ∧ 𝑞 = (𝑖𝑝)) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)))
3029ancoms 458 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)))
31 fveqeq2 6831 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁))
3231adantl 481 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁))
3330, 32anbi12d 632 . . . . . . . . . . . . . 14 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → ((𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁) ↔ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁)))
3425, 28, 33spc2ev 3557 . . . . . . . . . . . . 13 (((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3518, 22, 34syl2anc 584 . . . . . . . . . . . 12 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3615, 17, 35mpd3an23 1465 . . . . . . . . . . 11 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3736ex 412 . . . . . . . . . 10 (𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
3837rexlimivw 3129 . . . . . . . . 9 (∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
392, 38syl 17 . . . . . . . 8 ((𝐺 GraphIso 𝐻) ≠ ∅ → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
401, 39sylbi 217 . . . . . . 7 (𝐺𝑔𝑟 𝐻 → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
4140expdcom 414 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))))
4241exlimdvv 1935 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))))
4342imp 406 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
44 breq12 5094 . . . . . . 7 ((𝑓 = 𝑔𝑝 = 𝑞) → (𝑓(Cycles‘𝐻)𝑝𝑔(Cycles‘𝐻)𝑞))
4544ancoms 458 . . . . . 6 ((𝑝 = 𝑞𝑓 = 𝑔) → (𝑓(Cycles‘𝐻)𝑝𝑔(Cycles‘𝐻)𝑞))
46 fveqeq2 6831 . . . . . . 7 (𝑓 = 𝑔 → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁))
4746adantl 481 . . . . . 6 ((𝑝 = 𝑞𝑓 = 𝑔) → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁))
4845, 47anbi12d 632 . . . . 5 ((𝑝 = 𝑞𝑓 = 𝑔) → ((𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ (𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
4948cbvex2vw 2042 . . . 4 (∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
5043, 49imbitrrdi 252 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺𝑔𝑟 𝐻 → ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)))
5150con3d 152 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) → ¬ 𝐺𝑔𝑟 𝐻))
5251expimpd 453 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  c0 4280   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617  ccom 5618  cfv 6481  (class class class)co 7346  chash 14237  iEdgciedg 28975  USPGraphcuspgr 29126  Walkscwlks 29575  Cyclesccycls 29763   GraphIso cgrim 47974  𝑔𝑟 cgric 47975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-trls 29669  df-pths 29692  df-cycls 29765  df-grim 47977  df-gric 47980
This theorem is referenced by:  gpg5ngric  48227
  Copyright terms: Public domain W3C validator