Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycldlenngric Structured version   Visualization version   GIF version

Theorem cycldlenngric 47889
Description: Two simple pseudographs are not isomorphic if one has a cycle and the other has no cycle of the same length. (Contributed by AV, 6-Nov-2025.)
Assertion
Ref Expression
cycldlenngric ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺𝑔𝑟 𝐻))
Distinct variable groups:   𝑓,𝐺,𝑝   𝑓,𝐻,𝑝   𝑓,𝑁,𝑝

Proof of Theorem cycldlenngric
Dummy variables 𝑔 𝑖 𝑗 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgric 47873 . . . . . . . 8 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0rex 4332 . . . . . . . . 9 ((𝐺 GraphIso 𝐻) ≠ ∅ → ∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻))
3 eqid 2735 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2735 . . . . . . . . . . . . 13 (iEdg‘𝐻) = (iEdg‘𝐻)
5 simprll 778 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐺 ∈ USPGraph)
6 simprlr 779 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐻 ∈ USPGraph)
7 simpl 482 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑖 ∈ (𝐺 GraphIso 𝐻))
8 2fveq3 6880 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((iEdg‘𝐺)‘(𝑓𝑥)) = ((iEdg‘𝐺)‘(𝑓𝑗)))
98imaeq2d 6047 . . . . . . . . . . . . . . 15 (𝑥 = 𝑗 → (𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))) = (𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗))))
109fveq2d 6879 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))) = ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗)))))
1110cbvmptv 5225 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) = (𝑗 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗)))))
12 cycliswlk 29726 . . . . . . . . . . . . . . 15 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
1312ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → 𝑓(Walks‘𝐺)𝑝)
1413adantl 481 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Walks‘𝐺)𝑝)
153, 4, 5, 6, 7, 11, 14upgrimwlklen 47864 . . . . . . . . . . . 12 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)))
16 simprrl 780 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Cycles‘𝐺)𝑝)
173, 4, 5, 6, 7, 11, 16upgrimcycls 47872 . . . . . . . . . . . 12 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝))
18 simp3 1138 . . . . . . . . . . . . 13 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝))
19 simp2r 1201 . . . . . . . . . . . . . 14 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓))
20 simprrr 781 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (♯‘𝑓) = 𝑁)
21203ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘𝑓) = 𝑁)
2219, 21eqtrd 2770 . . . . . . . . . . . . 13 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁)
23 vex 3463 . . . . . . . . . . . . . . 15 𝑖 ∈ V
24 vex 3463 . . . . . . . . . . . . . . 15 𝑝 ∈ V
2523, 24coex 7924 . . . . . . . . . . . . . 14 (𝑖𝑝) ∈ V
26 vex 3463 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
2726dmex 7903 . . . . . . . . . . . . . . 15 dom 𝑓 ∈ V
2827mptex 7214 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) ∈ V
29 breq12 5124 . . . . . . . . . . . . . . . 16 ((𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) ∧ 𝑞 = (𝑖𝑝)) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)))
3029ancoms 458 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)))
31 fveqeq2 6884 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁))
3231adantl 481 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁))
3330, 32anbi12d 632 . . . . . . . . . . . . . 14 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → ((𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁) ↔ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁)))
3425, 28, 33spc2ev 3586 . . . . . . . . . . . . 13 (((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3518, 22, 34syl2anc 584 . . . . . . . . . . . 12 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3615, 17, 35mpd3an23 1465 . . . . . . . . . . 11 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3736ex 412 . . . . . . . . . 10 (𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
3837rexlimivw 3137 . . . . . . . . 9 (∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
392, 38syl 17 . . . . . . . 8 ((𝐺 GraphIso 𝐻) ≠ ∅ → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
401, 39sylbi 217 . . . . . . 7 (𝐺𝑔𝑟 𝐻 → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
4140expdcom 414 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))))
4241exlimdvv 1934 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))))
4342imp 406 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
44 breq12 5124 . . . . . . 7 ((𝑓 = 𝑔𝑝 = 𝑞) → (𝑓(Cycles‘𝐻)𝑝𝑔(Cycles‘𝐻)𝑞))
4544ancoms 458 . . . . . 6 ((𝑝 = 𝑞𝑓 = 𝑔) → (𝑓(Cycles‘𝐻)𝑝𝑔(Cycles‘𝐻)𝑞))
46 fveqeq2 6884 . . . . . . 7 (𝑓 = 𝑔 → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁))
4746adantl 481 . . . . . 6 ((𝑝 = 𝑞𝑓 = 𝑔) → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁))
4845, 47anbi12d 632 . . . . 5 ((𝑝 = 𝑞𝑓 = 𝑔) → ((𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ (𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
4948cbvex2vw 2040 . . . 4 (∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
5043, 49imbitrrdi 252 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺𝑔𝑟 𝐻 → ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)))
5150con3d 152 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) → ¬ 𝐺𝑔𝑟 𝐻))
5251expimpd 453 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  c0 4308   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658  cfv 6530  (class class class)co 7403  chash 14346  iEdgciedg 28922  USPGraphcuspgr 29073  Walkscwlks 29522  Cyclesccycls 29713   GraphIso cgrim 47836  𝑔𝑟 cgric 47837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-edg 28973  df-uhgr 28983  df-upgr 29007  df-uspgr 29075  df-wlks 29525  df-trls 29618  df-pths 29642  df-cycls 29715  df-grim 47839  df-gric 47842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator