Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycldlenngric Structured version   Visualization version   GIF version

Theorem cycldlenngric 47932
Description: Two simple pseudographs are not isomorphic if one has a cycle and the other has no cycle of the same length. (Contributed by AV, 6-Nov-2025.)
Assertion
Ref Expression
cycldlenngric ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺𝑔𝑟 𝐻))
Distinct variable groups:   𝑓,𝐺,𝑝   𝑓,𝐻,𝑝   𝑓,𝑁,𝑝

Proof of Theorem cycldlenngric
Dummy variables 𝑔 𝑖 𝑗 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgric 47916 . . . . . . . 8 (𝐺𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅)
2 n0rex 4323 . . . . . . . . 9 ((𝐺 GraphIso 𝐻) ≠ ∅ → ∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻))
3 eqid 2730 . . . . . . . . . . . . 13 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2730 . . . . . . . . . . . . 13 (iEdg‘𝐻) = (iEdg‘𝐻)
5 simprll 778 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐺 ∈ USPGraph)
6 simprlr 779 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐻 ∈ USPGraph)
7 simpl 482 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑖 ∈ (𝐺 GraphIso 𝐻))
8 2fveq3 6866 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑗 → ((iEdg‘𝐺)‘(𝑓𝑥)) = ((iEdg‘𝐺)‘(𝑓𝑗)))
98imaeq2d 6034 . . . . . . . . . . . . . . 15 (𝑥 = 𝑗 → (𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))) = (𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗))))
109fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = 𝑗 → ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))) = ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗)))))
1110cbvmptv 5214 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) = (𝑗 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑗)))))
12 cycliswlk 29735 . . . . . . . . . . . . . . 15 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
1312ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → 𝑓(Walks‘𝐺)𝑝)
1413adantl 481 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Walks‘𝐺)𝑝)
153, 4, 5, 6, 7, 11, 14upgrimwlklen 47907 . . . . . . . . . . . 12 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)))
16 simprrl 780 . . . . . . . . . . . . 13 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Cycles‘𝐺)𝑝)
173, 4, 5, 6, 7, 11, 16upgrimcycls 47915 . . . . . . . . . . . 12 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝))
18 simp3 1138 . . . . . . . . . . . . 13 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝))
19 simp2r 1201 . . . . . . . . . . . . . 14 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓))
20 simprrr 781 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (♯‘𝑓) = 𝑁)
21203ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘𝑓) = 𝑁)
2219, 21eqtrd 2765 . . . . . . . . . . . . 13 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁)
23 vex 3454 . . . . . . . . . . . . . . 15 𝑖 ∈ V
24 vex 3454 . . . . . . . . . . . . . . 15 𝑝 ∈ V
2523, 24coex 7909 . . . . . . . . . . . . . 14 (𝑖𝑝) ∈ V
26 vex 3454 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
2726dmex 7888 . . . . . . . . . . . . . . 15 dom 𝑓 ∈ V
2827mptex 7200 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) ∈ V
29 breq12 5115 . . . . . . . . . . . . . . . 16 ((𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) ∧ 𝑞 = (𝑖𝑝)) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)))
3029ancoms 458 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)))
31 fveqeq2 6870 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁))
3231adantl 481 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁))
3330, 32anbi12d 632 . . . . . . . . . . . . . 14 ((𝑞 = (𝑖𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) → ((𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁) ↔ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁)))
3425, 28, 33spc2ev 3576 . . . . . . . . . . . . 13 (((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = 𝑁) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3518, 22, 34syl2anc 584 . . . . . . . . . . . 12 (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Walks‘𝐻)(𝑖𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ ((iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓𝑥)))))(Cycles‘𝐻)(𝑖𝑝)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3615, 17, 35mpd3an23 1465 . . . . . . . . . . 11 ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
3736ex 412 . . . . . . . . . 10 (𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
3837rexlimivw 3131 . . . . . . . . 9 (∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
392, 38syl 17 . . . . . . . 8 ((𝐺 GraphIso 𝐻) ≠ ∅ → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
401, 39sylbi 217 . . . . . . 7 (𝐺𝑔𝑟 𝐻 → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
4140expdcom 414 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))))
4241exlimdvv 1934 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))))
4342imp 406 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺𝑔𝑟 𝐻 → ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
44 breq12 5115 . . . . . . 7 ((𝑓 = 𝑔𝑝 = 𝑞) → (𝑓(Cycles‘𝐻)𝑝𝑔(Cycles‘𝐻)𝑞))
4544ancoms 458 . . . . . 6 ((𝑝 = 𝑞𝑓 = 𝑔) → (𝑓(Cycles‘𝐻)𝑝𝑔(Cycles‘𝐻)𝑞))
46 fveqeq2 6870 . . . . . . 7 (𝑓 = 𝑔 → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁))
4746adantl 481 . . . . . 6 ((𝑝 = 𝑞𝑓 = 𝑔) → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁))
4845, 47anbi12d 632 . . . . 5 ((𝑝 = 𝑞𝑓 = 𝑔) → ((𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ (𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))
4948cbvex2vw 2041 . . . 4 (∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ ∃𝑞𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))
5043, 49imbitrrdi 252 . . 3 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺𝑔𝑟 𝐻 → ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)))
5150con3d 152 . 2 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ ∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) → ¬ 𝐺𝑔𝑟 𝐻))
5251expimpd 453 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((∃𝑝𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺𝑔𝑟 𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  c0 4299   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  ccom 5645  cfv 6514  (class class class)co 7390  chash 14302  iEdgciedg 28931  USPGraphcuspgr 29082  Walkscwlks 29531  Cyclesccycls 29722   GraphIso cgrim 47879  𝑔𝑟 cgric 47880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-uspgr 29084  df-wlks 29534  df-trls 29627  df-pths 29651  df-cycls 29724  df-grim 47882  df-gric 47885
This theorem is referenced by:  gpg5ngric  48122
  Copyright terms: Public domain W3C validator