| Step | Hyp | Ref
| Expression |
| 1 | | brgric 47873 |
. . . . . . . 8
⊢ (𝐺
≃𝑔𝑟 𝐻 ↔ (𝐺 GraphIso 𝐻) ≠ ∅) |
| 2 | | n0rex 4332 |
. . . . . . . . 9
⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ → ∃𝑖 ∈ (𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻)) |
| 3 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 4 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 5 | | simprll 778 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐺 ∈ USPGraph) |
| 6 | | simprlr 779 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝐻 ∈ USPGraph) |
| 7 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑖 ∈ (𝐺 GraphIso 𝐻)) |
| 8 | | 2fveq3 6880 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑗 → ((iEdg‘𝐺)‘(𝑓‘𝑥)) = ((iEdg‘𝐺)‘(𝑓‘𝑗))) |
| 9 | 8 | imaeq2d 6047 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑗 → (𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥))) = (𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑗)))) |
| 10 | 9 | fveq2d 6879 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑗 → (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))) = (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑗))))) |
| 11 | 10 | cbvmptv 5225 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥))))) = (𝑗 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑗))))) |
| 12 | | cycliswlk 29726 |
. . . . . . . . . . . . . . 15
⊢ (𝑓(Cycles‘𝐺)𝑝 → 𝑓(Walks‘𝐺)𝑝) |
| 13 | 12 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → 𝑓(Walks‘𝐺)𝑝) |
| 14 | 13 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Walks‘𝐺)𝑝) |
| 15 | 3, 4, 5, 6, 7, 11,
14 | upgrimwlklen 47864 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Walks‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓))) |
| 16 | | simprrl 780 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → 𝑓(Cycles‘𝐺)𝑝) |
| 17 | 3, 4, 5, 6, 7, 11,
16 | upgrimcycls 47872 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) |
| 18 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Walks‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) → (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) |
| 19 | | simp2r 1201 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Walks‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓)) |
| 20 | | simprrr 781 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → (♯‘𝑓) = 𝑁) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Walks‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) → (♯‘𝑓) = 𝑁) |
| 22 | 19, 21 | eqtrd 2770 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Walks‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) → (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = 𝑁) |
| 23 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑖 ∈ V |
| 24 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑝 ∈ V |
| 25 | 23, 24 | coex 7924 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∘ 𝑝) ∈ V |
| 26 | | vex 3463 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
| 27 | 26 | dmex 7903 |
. . . . . . . . . . . . . . 15
⊢ dom 𝑓 ∈ V |
| 28 | 27 | mptex 7214 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥))))) ∈ V |
| 29 | | breq12 5124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 = (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥))))) ∧ 𝑞 = (𝑖 ∘ 𝑝)) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝))) |
| 30 | 29 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 = (𝑖 ∘ 𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) → (𝑔(Cycles‘𝐻)𝑞 ↔ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝))) |
| 31 | | fveqeq2 6884 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = 𝑁)) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 = (𝑖 ∘ 𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) → ((♯‘𝑔) = 𝑁 ↔ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = 𝑁)) |
| 33 | 30, 32 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 = (𝑖 ∘ 𝑝) ∧ 𝑔 = (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) → ((𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁) ↔ ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = 𝑁))) |
| 34 | 25, 28, 33 | spc2ev 3586 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = 𝑁) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)) |
| 35 | 18, 22, 34 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) ∧ ((𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Walks‘𝐻)(𝑖 ∘ 𝑝) ∧ (♯‘(𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))) = (♯‘𝑓)) ∧ (𝑥 ∈ dom 𝑓 ↦ (◡(iEdg‘𝐻)‘(𝑖 “ ((iEdg‘𝐺)‘(𝑓‘𝑥)))))(Cycles‘𝐻)(𝑖 ∘ 𝑝)) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)) |
| 36 | 15, 17, 35 | mpd3an23 1465 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (𝐺 GraphIso 𝐻) ∧ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁))) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)) |
| 37 | 36 | ex 412 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))) |
| 38 | 37 | rexlimivw 3137 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
(𝐺 GraphIso 𝐻)𝑖 ∈ (𝐺 GraphIso 𝐻) → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))) |
| 39 | 2, 38 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 GraphIso 𝐻) ≠ ∅ → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))) |
| 40 | 1, 39 | sylbi 217 |
. . . . . . 7
⊢ (𝐺
≃𝑔𝑟 𝐻 → (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))) |
| 41 | 40 | expdcom 414 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺 ≃𝑔𝑟 𝐻 → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))) |
| 42 | 41 | exlimdvv 1934 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) → (𝐺 ≃𝑔𝑟 𝐻 → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)))) |
| 43 | 42 | imp 406 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧
∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺 ≃𝑔𝑟 𝐻 → ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))) |
| 44 | | breq12 5124 |
. . . . . . 7
⊢ ((𝑓 = 𝑔 ∧ 𝑝 = 𝑞) → (𝑓(Cycles‘𝐻)𝑝 ↔ 𝑔(Cycles‘𝐻)𝑞)) |
| 45 | 44 | ancoms 458 |
. . . . . 6
⊢ ((𝑝 = 𝑞 ∧ 𝑓 = 𝑔) → (𝑓(Cycles‘𝐻)𝑝 ↔ 𝑔(Cycles‘𝐻)𝑞)) |
| 46 | | fveqeq2 6884 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁)) |
| 47 | 46 | adantl 481 |
. . . . . 6
⊢ ((𝑝 = 𝑞 ∧ 𝑓 = 𝑔) → ((♯‘𝑓) = 𝑁 ↔ (♯‘𝑔) = 𝑁)) |
| 48 | 45, 47 | anbi12d 632 |
. . . . 5
⊢ ((𝑝 = 𝑞 ∧ 𝑓 = 𝑔) → ((𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ (𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁))) |
| 49 | 48 | cbvex2vw 2040 |
. . . 4
⊢
(∃𝑝∃𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) ↔ ∃𝑞∃𝑔(𝑔(Cycles‘𝐻)𝑞 ∧ (♯‘𝑔) = 𝑁)) |
| 50 | 43, 49 | imbitrrdi 252 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧
∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (𝐺 ≃𝑔𝑟 𝐻 → ∃𝑝∃𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁))) |
| 51 | 50 | con3d 152 |
. 2
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧
∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁)) → (¬ ∃𝑝∃𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 52 | 51 | expimpd 453 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
((∃𝑝∃𝑓(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 𝑁) ∧ ¬ ∃𝑝∃𝑓(𝑓(Cycles‘𝐻)𝑝 ∧ (♯‘𝑓) = 𝑁)) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |