| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl12ngric | Structured version Visualization version GIF version | ||
| Description: The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48139, whereas 𝐺 does not, see usgrexmpl2trifr 48151. (Contributed by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| usgrexmpl1.k | ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.h | ⊢ 𝐻 = 〈𝑉, 𝐾〉 |
| Ref | Expression |
|---|---|
| usgrexmpl12ngric | ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | . . . . . 6 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl2.e | . . . . . 6 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
| 3 | usgrexmpl2.g | . . . . . 6 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | usgrexmpl2 48141 | . . . . 5 ⊢ 𝐺 ∈ USGraph |
| 5 | usgruhgr 29175 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UHGraph |
| 7 | gricsym 48035 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺) |
| 9 | usgrexmpl1.k | . . . 4 ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 10 | usgrexmpl1.h | . . . 4 ⊢ 𝐻 = 〈𝑉, 𝐾〉 | |
| 11 | 1, 9, 10 | usgrexmpl1tri 48139 | . . 3 ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐻) |
| 12 | brgric 48026 | . . . . 5 ⊢ (𝐻 ≃𝑔𝑟 𝐺 ↔ (𝐻 GraphIso 𝐺) ≠ ∅) | |
| 13 | n0 4304 | . . . . 5 ⊢ ((𝐻 GraphIso 𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺)) | |
| 14 | 12, 13 | bitri 275 | . . . 4 ⊢ (𝐻 ≃𝑔𝑟 𝐺 ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺)) |
| 15 | 1, 2, 3 | usgrexmpl2trifr 48151 | . . . . . 6 ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |
| 16 | 1, 9, 10 | usgrexmpl1 48136 | . . . . . . . . . 10 ⊢ 𝐻 ∈ USGraph |
| 17 | usgruhgr 29175 | . . . . . . . . . 10 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ 𝐻 ∈ UHGraph |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐻 ∈ UHGraph) |
| 20 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐺 ∈ UHGraph) |
| 21 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝑓 ∈ (𝐻 GraphIso 𝐺)) | |
| 22 | simpr 484 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → {0, 1, 2} ∈ (GrTriangles‘𝐻)) | |
| 23 | 19, 20, 21, 22 | grimgrtri 48063 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺)) |
| 24 | 23 | ex 412 | . . . . . 6 ⊢ (𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 25 | alnex 1782 | . . . . . . 7 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | |
| 26 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
| 27 | 26 | imaex 7853 | . . . . . . . . 9 ⊢ (𝑓 “ {0, 1, 2}) ∈ V |
| 28 | id 22 | . . . . . . . . . 10 ⊢ ((𝑓 “ {0, 1, 2}) ∈ V → (𝑓 “ {0, 1, 2}) ∈ V) | |
| 29 | eleq1 2821 | . . . . . . . . . . . 12 ⊢ (𝑡 = (𝑓 “ {0, 1, 2}) → (𝑡 ∈ (GrTriangles‘𝐺) ↔ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) | |
| 30 | 29 | notbid 318 | . . . . . . . . . . 11 ⊢ (𝑡 = (𝑓 “ {0, 1, 2}) → (¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝑓 “ {0, 1, 2}) ∈ V ∧ 𝑡 = (𝑓 “ {0, 1, 2})) → (¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 32 | 28, 31 | spcdv 3546 | . . . . . . . . 9 ⊢ ((𝑓 “ {0, 1, 2}) ∈ V → (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 33 | 27, 32 | ax-mp 5 | . . . . . . . 8 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺)) |
| 34 | 33 | pm2.21d 121 | . . . . . . 7 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ((𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 35 | 25, 34 | sylbir 235 | . . . . . 6 ⊢ (¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → ((𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 36 | 15, 24, 35 | mpsylsyld 69 | . . . . 5 ⊢ (𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 37 | 36 | exlimiv 1931 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 38 | 14, 37 | sylbi 217 | . . 3 ⊢ (𝐻 ≃𝑔𝑟 𝐺 → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 39 | 8, 11, 38 | mpisyl 21 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑔𝑟 𝐻) |
| 40 | 39 | pm2.01i 189 | 1 ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 Vcvv 3438 ∅c0 4284 {cpr 4579 {ctp 4581 〈cop 4583 class class class wbr 5095 “ cima 5624 ‘cfv 6489 (class class class)co 7355 0cc0 11016 1c1 11017 2c2 12190 3c3 12191 4c4 12192 5c5 12193 ...cfz 13417 〈“cs7 14763 UHGraphcuhgr 29045 USGraphcusgr 29138 GraphIso cgrim 47989 ≃𝑔𝑟 cgric 47990 GrTrianglescgrtri 48051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-3o 8396 df-oadd 8398 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-n0 12392 df-xnn0 12465 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 df-hash 14248 df-word 14431 df-concat 14488 df-s1 14514 df-s2 14765 df-s3 14766 df-s4 14767 df-s5 14768 df-s6 14769 df-s7 14770 df-vtx 28987 df-iedg 28988 df-edg 29037 df-uhgr 29047 df-upgr 29071 df-umgr 29072 df-uspgr 29139 df-usgr 29140 df-nbgr 29322 df-grim 47992 df-gric 47995 df-grtri 48052 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |