| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl12ngric | Structured version Visualization version GIF version | ||
| Description: The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48035, whereas 𝐺 does not, see usgrexmpl2trifr 48047. (Contributed by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| usgrexmpl1.k | ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.h | ⊢ 𝐻 = 〈𝑉, 𝐾〉 |
| Ref | Expression |
|---|---|
| usgrexmpl12ngric | ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | . . . . . 6 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl2.e | . . . . . 6 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
| 3 | usgrexmpl2.g | . . . . . 6 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | usgrexmpl2 48037 | . . . . 5 ⊢ 𝐺 ∈ USGraph |
| 5 | usgruhgr 29157 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UHGraph |
| 7 | gricsym 47931 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺) |
| 9 | usgrexmpl1.k | . . . 4 ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 10 | usgrexmpl1.h | . . . 4 ⊢ 𝐻 = 〈𝑉, 𝐾〉 | |
| 11 | 1, 9, 10 | usgrexmpl1tri 48035 | . . 3 ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐻) |
| 12 | brgric 47922 | . . . . 5 ⊢ (𝐻 ≃𝑔𝑟 𝐺 ↔ (𝐻 GraphIso 𝐺) ≠ ∅) | |
| 13 | n0 4301 | . . . . 5 ⊢ ((𝐻 GraphIso 𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺)) | |
| 14 | 12, 13 | bitri 275 | . . . 4 ⊢ (𝐻 ≃𝑔𝑟 𝐺 ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺)) |
| 15 | 1, 2, 3 | usgrexmpl2trifr 48047 | . . . . . 6 ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |
| 16 | 1, 9, 10 | usgrexmpl1 48032 | . . . . . . . . . 10 ⊢ 𝐻 ∈ USGraph |
| 17 | usgruhgr 29157 | . . . . . . . . . 10 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ 𝐻 ∈ UHGraph |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐻 ∈ UHGraph) |
| 20 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐺 ∈ UHGraph) |
| 21 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝑓 ∈ (𝐻 GraphIso 𝐺)) | |
| 22 | simpr 484 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → {0, 1, 2} ∈ (GrTriangles‘𝐻)) | |
| 23 | 19, 20, 21, 22 | grimgrtri 47959 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺)) |
| 24 | 23 | ex 412 | . . . . . 6 ⊢ (𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 25 | alnex 1782 | . . . . . . 7 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | |
| 26 | vex 3438 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
| 27 | 26 | imaex 7839 | . . . . . . . . 9 ⊢ (𝑓 “ {0, 1, 2}) ∈ V |
| 28 | id 22 | . . . . . . . . . 10 ⊢ ((𝑓 “ {0, 1, 2}) ∈ V → (𝑓 “ {0, 1, 2}) ∈ V) | |
| 29 | eleq1 2817 | . . . . . . . . . . . 12 ⊢ (𝑡 = (𝑓 “ {0, 1, 2}) → (𝑡 ∈ (GrTriangles‘𝐺) ↔ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) | |
| 30 | 29 | notbid 318 | . . . . . . . . . . 11 ⊢ (𝑡 = (𝑓 “ {0, 1, 2}) → (¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝑓 “ {0, 1, 2}) ∈ V ∧ 𝑡 = (𝑓 “ {0, 1, 2})) → (¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 32 | 28, 31 | spcdv 3547 | . . . . . . . . 9 ⊢ ((𝑓 “ {0, 1, 2}) ∈ V → (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 33 | 27, 32 | ax-mp 5 | . . . . . . . 8 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺)) |
| 34 | 33 | pm2.21d 121 | . . . . . . 7 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ((𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 35 | 25, 34 | sylbir 235 | . . . . . 6 ⊢ (¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → ((𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 36 | 15, 24, 35 | mpsylsyld 69 | . . . . 5 ⊢ (𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 37 | 36 | exlimiv 1931 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 38 | 14, 37 | sylbi 217 | . . 3 ⊢ (𝐻 ≃𝑔𝑟 𝐺 → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 39 | 8, 11, 38 | mpisyl 21 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑔𝑟 𝐻) |
| 40 | 39 | pm2.01i 189 | 1 ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ∅c0 4281 {cpr 4576 {ctp 4578 〈cop 4580 class class class wbr 5089 “ cima 5617 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 2c2 12172 3c3 12173 4c4 12174 5c5 12175 ...cfz 13399 〈“cs7 14745 UHGraphcuhgr 29027 USGraphcusgr 29120 GraphIso cgrim 47885 ≃𝑔𝑟 cgric 47886 GrTrianglescgrtri 47947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-3o 8382 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-s4 14749 df-s5 14750 df-s6 14751 df-s7 14752 df-vtx 28969 df-iedg 28970 df-edg 29019 df-uhgr 29029 df-upgr 29053 df-umgr 29054 df-uspgr 29121 df-usgr 29122 df-nbgr 29304 df-grim 47888 df-gric 47891 df-grtri 47948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |