| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl12ngric | Structured version Visualization version GIF version | ||
| Description: The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48016, whereas 𝐺 does not, see usgrexmpl2trifr 48028. (Contributed by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| usgrexmpl1.k | ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.h | ⊢ 𝐻 = 〈𝑉, 𝐾〉 |
| Ref | Expression |
|---|---|
| usgrexmpl12ngric | ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | . . . . . 6 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl2.e | . . . . . 6 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
| 3 | usgrexmpl2.g | . . . . . 6 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | usgrexmpl2 48018 | . . . . 5 ⊢ 𝐺 ∈ USGraph |
| 5 | usgruhgr 29113 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UHGraph |
| 7 | gricsym 47921 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺)) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺) |
| 9 | usgrexmpl1.k | . . . 4 ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 10 | usgrexmpl1.h | . . . 4 ⊢ 𝐻 = 〈𝑉, 𝐾〉 | |
| 11 | 1, 9, 10 | usgrexmpl1tri 48016 | . . 3 ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐻) |
| 12 | brgric 47912 | . . . . 5 ⊢ (𝐻 ≃𝑔𝑟 𝐺 ↔ (𝐻 GraphIso 𝐺) ≠ ∅) | |
| 13 | n0 4316 | . . . . 5 ⊢ ((𝐻 GraphIso 𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺)) | |
| 14 | 12, 13 | bitri 275 | . . . 4 ⊢ (𝐻 ≃𝑔𝑟 𝐺 ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺)) |
| 15 | 1, 2, 3 | usgrexmpl2trifr 48028 | . . . . . 6 ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |
| 16 | 1, 9, 10 | usgrexmpl1 48013 | . . . . . . . . . 10 ⊢ 𝐻 ∈ USGraph |
| 17 | usgruhgr 29113 | . . . . . . . . . 10 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ UHGraph) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ 𝐻 ∈ UHGraph |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐻 ∈ UHGraph) |
| 20 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐺 ∈ UHGraph) |
| 21 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝑓 ∈ (𝐻 GraphIso 𝐺)) | |
| 22 | simpr 484 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → {0, 1, 2} ∈ (GrTriangles‘𝐻)) | |
| 23 | 19, 20, 21, 22 | grimgrtri 47948 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐻 GraphIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺)) |
| 24 | 23 | ex 412 | . . . . . 6 ⊢ (𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 25 | alnex 1781 | . . . . . . 7 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) | |
| 26 | vex 3451 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
| 27 | 26 | imaex 7890 | . . . . . . . . 9 ⊢ (𝑓 “ {0, 1, 2}) ∈ V |
| 28 | id 22 | . . . . . . . . . 10 ⊢ ((𝑓 “ {0, 1, 2}) ∈ V → (𝑓 “ {0, 1, 2}) ∈ V) | |
| 29 | eleq1 2816 | . . . . . . . . . . . 12 ⊢ (𝑡 = (𝑓 “ {0, 1, 2}) → (𝑡 ∈ (GrTriangles‘𝐺) ↔ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) | |
| 30 | 29 | notbid 318 | . . . . . . . . . . 11 ⊢ (𝑡 = (𝑓 “ {0, 1, 2}) → (¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝑓 “ {0, 1, 2}) ∈ V ∧ 𝑡 = (𝑓 “ {0, 1, 2})) → (¬ 𝑡 ∈ (GrTriangles‘𝐺) ↔ ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 32 | 28, 31 | spcdv 3560 | . . . . . . . . 9 ⊢ ((𝑓 “ {0, 1, 2}) ∈ V → (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺))) |
| 33 | 27, 32 | ax-mp 5 | . . . . . . . 8 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ¬ (𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺)) |
| 34 | 33 | pm2.21d 121 | . . . . . . 7 ⊢ (∀𝑡 ¬ 𝑡 ∈ (GrTriangles‘𝐺) → ((𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 35 | 25, 34 | sylbir 235 | . . . . . 6 ⊢ (¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → ((𝑓 “ {0, 1, 2}) ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 36 | 15, 24, 35 | mpsylsyld 69 | . . . . 5 ⊢ (𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 37 | 36 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐻 GraphIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 38 | 14, 37 | sylbi 217 | . . 3 ⊢ (𝐻 ≃𝑔𝑟 𝐺 → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑔𝑟 𝐻)) |
| 39 | 8, 11, 38 | mpisyl 21 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑔𝑟 𝐻) |
| 40 | 39 | pm2.01i 189 | 1 ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {cpr 4591 {ctp 4593 〈cop 4595 class class class wbr 5107 “ cima 5641 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 2c2 12241 3c3 12242 4c4 12243 5c5 12244 ...cfz 13468 〈“cs7 14812 UHGraphcuhgr 28983 USGraphcusgr 29076 GraphIso cgrim 47875 ≃𝑔𝑟 cgric 47876 GrTrianglescgrtri 47936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-3o 8436 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-s4 14816 df-s5 14817 df-s6 14818 df-s7 14819 df-vtx 28925 df-iedg 28926 df-edg 28975 df-uhgr 28985 df-upgr 29009 df-umgr 29010 df-uspgr 29077 df-usgr 29078 df-nbgr 29260 df-grim 47878 df-gric 47881 df-grtri 47937 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |