MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhmb Structured version   Visualization version   GIF version

Theorem ghmmhmb 19166
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhmb ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))

Proof of Theorem ghmmhmb
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 19165 . . 3 (𝑓 ∈ (𝑆 GrpHom 𝑇) → 𝑓 ∈ (𝑆 MndHom 𝑇))
2 eqid 2730 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2730 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
4 eqid 2730 . . . . 5 (+g𝑆) = (+g𝑆)
5 eqid 2730 . . . . 5 (+g𝑇) = (+g𝑇)
6 simpll 766 . . . . 5 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Grp)
7 simplr 768 . . . . 5 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑇 ∈ Grp)
82, 3mhmf 18723 . . . . . 6 (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇))
98adantl 481 . . . . 5 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇))
102, 4, 5mhmlin 18727 . . . . . . 7 ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
11103expb 1120 . . . . . 6 ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
1211adantll 714 . . . . 5 ((((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
132, 3, 4, 5, 6, 7, 9, 12isghmd 19164 . . . 4 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓 ∈ (𝑆 GrpHom 𝑇))
1413ex 412 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓 ∈ (𝑆 GrpHom 𝑇)))
151, 14impbid2 226 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↔ 𝑓 ∈ (𝑆 MndHom 𝑇)))
1615eqrdv 2728 1 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227   MndHom cmhm 18715  Grpcgrp 18872   GrpHom cghm 19151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152
This theorem is referenced by:  0ghm  19169  resghm2  19172  resghm2b  19173  ghmco  19175  pwsdiagghm  19183  ghmpropd  19195  c0ghm  20377  c0snghm  20380  pwsco1rhm  20418  pwsco2rhm  20419  dchrghm  27174
  Copyright terms: Public domain W3C validator