| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmmhmb | Structured version Visualization version GIF version | ||
| Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ghmmhmb | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm 19141 | . . 3 ⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) → 𝑓 ∈ (𝑆 MndHom 𝑇)) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 6 | simpll 766 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Grp) | |
| 7 | simplr 768 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑇 ∈ Grp) | |
| 8 | 2, 3 | mhmf 18699 | . . . . . 6 ⊢ (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇)) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇)) |
| 10 | 2, 4, 5 | mhmlin 18703 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
| 11 | 10 | 3expb 1120 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
| 12 | 11 | adantll 714 | . . . . 5 ⊢ ((((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
| 13 | 2, 3, 4, 5, 6, 7, 9, 12 | isghmd 19140 | . . . 4 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓 ∈ (𝑆 GrpHom 𝑇)) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓 ∈ (𝑆 GrpHom 𝑇))) |
| 15 | 1, 14 | impbid2 226 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↔ 𝑓 ∈ (𝑆 MndHom 𝑇))) |
| 16 | 15 | eqrdv 2727 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 +gcplusg 17197 MndHom cmhm 18691 Grpcgrp 18848 GrpHom cghm 19127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-0g 17381 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-ghm 19128 |
| This theorem is referenced by: 0ghm 19145 resghm2 19148 resghm2b 19149 ghmco 19151 pwsdiagghm 19159 ghmpropd 19171 c0ghm 20382 c0snghm 20385 pwsco1rhm 20423 pwsco2rhm 20424 dchrghm 27201 |
| Copyright terms: Public domain | W3C validator |