![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmmhmb | Structured version Visualization version GIF version |
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
ghmmhmb | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmmhm 19148 | . . 3 ⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) → 𝑓 ∈ (𝑆 MndHom 𝑇)) | |
2 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
4 | eqid 2726 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
5 | eqid 2726 | . . . . 5 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
6 | simpll 764 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Grp) | |
7 | simplr 766 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑇 ∈ Grp) | |
8 | 2, 3 | mhmf 18716 | . . . . . 6 ⊢ (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇)) |
9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇)) |
10 | 2, 4, 5 | mhmlin 18720 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
11 | 10 | 3expb 1117 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
12 | 11 | adantll 711 | . . . . 5 ⊢ ((((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
13 | 2, 3, 4, 5, 6, 7, 9, 12 | isghmd 19147 | . . . 4 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓 ∈ (𝑆 GrpHom 𝑇)) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓 ∈ (𝑆 GrpHom 𝑇))) |
15 | 1, 14 | impbid2 225 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↔ 𝑓 ∈ (𝑆 MndHom 𝑇))) |
16 | 15 | eqrdv 2724 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 MndHom cmhm 18708 Grpcgrp 18860 GrpHom cghm 19135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-mhm 18710 df-grp 18863 df-ghm 19136 |
This theorem is referenced by: 0ghm 19152 resghm2 19155 resghm2b 19156 ghmco 19158 pwsdiagghm 19166 ghmpropd 19178 c0ghm 20360 c0snghm 20363 pwsco1rhm 20401 pwsco2rhm 20402 dchrghm 27139 |
Copyright terms: Public domain | W3C validator |