| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0fN | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdleme0.l | ⊢ ≤ = (le‘𝐾) |
| cdleme0.j | ⊢ ∨ = (join‘𝐾) |
| cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme0c.3 | ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme0fN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑉 ≠ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme0c.3 | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 2 | simp1l 1197 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) | |
| 3 | 2 | hllatd 39324 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 4 | simp2l 1199 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
| 5 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | cdleme0.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atbase 39249 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 8 | 4, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
| 9 | simp3r 1202 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
| 10 | 5, 6 | atbase 39249 | . . . . . 6 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
| 12 | cdleme0.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 13 | 5, 12 | latjcl 18453 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 14 | 3, 8, 11, 13 | syl3anc 1372 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 15 | simp1r 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑊 ∈ 𝐻) | |
| 16 | cdleme0.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 17 | 5, 16 | lhpbase 39959 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 18 | 15, 17 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑊 ∈ (Base‘𝐾)) |
| 19 | cdleme0.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 20 | cdleme0.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 21 | 5, 19, 20 | latmle2 18479 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ≤ 𝑊) |
| 22 | 3, 14, 18, 21 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑅) ∧ 𝑊) ≤ 𝑊) |
| 23 | 1, 22 | eqbrtrid 5158 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑉 ≤ 𝑊) |
| 24 | simp2r 1200 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ 𝑃 ≤ 𝑊) | |
| 25 | nbrne2 5143 | . 2 ⊢ ((𝑉 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑉 ≠ 𝑃) | |
| 26 | 23, 24, 25 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑉 ≠ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 lecple 17280 joincjn 18327 meetcmee 18328 Latclat 18445 Atomscatm 39223 HLchlt 39310 LHypclh 39945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-lat 18446 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-lhyp 39949 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |