HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chub2i Structured version   Visualization version   GIF version

Theorem chub2i 29841
Description: C join is an upper bound of two elements. (Contributed by NM, 5-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion
Ref Expression
chub2i 𝐴 ⊆ (𝐵 𝐴)

Proof of Theorem chub2i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
2 chjcl.2 . . 3 𝐵C
31, 2chub1i 29840 . 2 𝐴 ⊆ (𝐴 𝐵)
41, 2chjcomi 29839 . 2 (𝐴 𝐵) = (𝐵 𝐴)
53, 4sseqtri 3958 1 𝐴 ⊆ (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wss 3888  (class class class)co 7284   C cch 29300   chj 29304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960  ax-hilex 29370  ax-hfvadd 29371  ax-hvcom 29372  ax-hvass 29373  ax-hv0cl 29374  ax-hvaddid 29375  ax-hfvmul 29376  ax-hvmulid 29377  ax-hvmulass 29378  ax-hvdistr1 29379  ax-hvdistr2 29380  ax-hvmul0 29381  ax-hfi 29450  ax-his1 29453  ax-his2 29454  ax-his3 29455  ax-his4 29456  ax-hcompl 29573
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cn 22387  df-cnp 22388  df-lm 22389  df-haus 22475  df-tx 22722  df-hmeo 22915  df-xms 23482  df-ms 23483  df-tms 23484  df-cau 24429  df-grpo 28864  df-gid 28865  df-ginv 28866  df-gdiv 28867  df-ablo 28916  df-vc 28930  df-nv 28963  df-va 28966  df-ba 28967  df-sm 28968  df-0v 28969  df-vs 28970  df-nmcv 28971  df-ims 28972  df-dip 29072  df-hnorm 29339  df-hvsub 29342  df-hlim 29343  df-hcau 29344  df-sh 29578  df-ch 29592  df-oc 29623  df-shs 29679  df-chj 29681
This theorem is referenced by:  chlejb1i  29847  chdmm1i  29848  chj00i  29858  chj1i  29860  lejdii  29909  cmcmlem  29962  cmbr4i  29972  cmj2i  29976  qlaxr3i  30007  osumcori  30014  mayetes3i  30100  pjclem1  30566  pjci  30571  mdslj1i  30690  mdslj2i  30691  mdsl1i  30692  mdsl2i  30693  cvmdi  30695  mdslmd1lem1  30696  mdslmd1lem2  30697  mdslmd2i  30701  mdexchi  30706  sumdmdlem2  30790  dmdbr5ati  30793
  Copyright terms: Public domain W3C validator