![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chub1i | Structured version Visualization version GIF version |
Description: Cℋ join is an upper bound of two elements. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
chjcl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
chub1i | ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 28417 | . 2 ⊢ 𝐴 ∈ Sℋ |
3 | chjcl.2 | . . 3 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | chshii 28417 | . 2 ⊢ 𝐵 ∈ Sℋ |
5 | 2, 4 | shub1i 28566 | 1 ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ⊆ wss 3723 (class class class)co 6791 Cℋ cch 28119 ∨ℋ chj 28123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 ax-addf 10215 ax-mulf 10216 ax-hilex 28189 ax-hfvadd 28190 ax-hvcom 28191 ax-hvass 28192 ax-hv0cl 28193 ax-hvaddid 28194 ax-hfvmul 28195 ax-hvmulid 28196 ax-hvmulass 28197 ax-hvdistr1 28198 ax-hvdistr2 28199 ax-hvmul0 28200 ax-hfi 28269 ax-his1 28272 ax-his2 28273 ax-his3 28274 ax-his4 28275 ax-hcompl 28392 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-of 7042 df-om 7211 df-1st 7313 df-2nd 7314 df-supp 7445 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-2o 7712 df-oadd 7715 df-er 7894 df-map 8009 df-pm 8010 df-ixp 8061 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-fsupp 8430 df-fi 8471 df-sup 8502 df-inf 8503 df-oi 8569 df-card 8963 df-cda 9190 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11887 df-q 11990 df-rp 12029 df-xneg 12144 df-xadd 12145 df-xmul 12146 df-ioo 12377 df-icc 12380 df-fz 12527 df-fzo 12667 df-seq 13002 df-exp 13061 df-hash 13315 df-cj 14040 df-re 14041 df-im 14042 df-sqrt 14176 df-abs 14177 df-clim 14420 df-sum 14618 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16155 df-mulr 16156 df-starv 16157 df-sca 16158 df-vsca 16159 df-ip 16160 df-tset 16161 df-ple 16162 df-ds 16165 df-unif 16166 df-hom 16167 df-cco 16168 df-rest 16284 df-topn 16285 df-0g 16303 df-gsum 16304 df-topgen 16305 df-pt 16306 df-prds 16309 df-xrs 16363 df-qtop 16368 df-imas 16369 df-xps 16371 df-mre 16447 df-mrc 16448 df-acs 16450 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19946 df-xmet 19947 df-met 19948 df-bl 19949 df-mopn 19950 df-cnfld 19955 df-top 20912 df-topon 20929 df-topsp 20951 df-bases 20964 df-cn 21245 df-cnp 21246 df-lm 21247 df-haus 21333 df-tx 21579 df-hmeo 21772 df-xms 22338 df-ms 22339 df-tms 22340 df-cau 23266 df-grpo 27680 df-gid 27681 df-ginv 27682 df-gdiv 27683 df-ablo 27732 df-vc 27747 df-nv 27780 df-va 27783 df-ba 27784 df-sm 27785 df-0v 27786 df-vs 27787 df-nmcv 27788 df-ims 27789 df-dip 27889 df-hnorm 28158 df-hvsub 28161 df-hlim 28162 df-hcau 28163 df-sh 28397 df-ch 28411 df-oc 28442 df-shs 28500 df-chj 28502 |
This theorem is referenced by: chub2i 28662 chlejb1i 28668 chdmm1i 28669 chnlei 28677 chj00i 28679 lejdii 28730 pjoml4i 28779 pjoml5i 28780 pjoml6i 28781 cmj1i 28796 qlaxr3i 28828 mayetes3i 28921 pjclem1 29387 mdslj1i 29511 mdslmd1lem1 29517 mdslmd2i 29522 mdexchi 29527 atabsi 29593 |
Copyright terms: Public domain | W3C validator |