HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chub1i Structured version   Visualization version   GIF version

Theorem chub1i 30987
Description: C join is an upper bound of two elements. (Contributed by NM, 15-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion
Ref Expression
chub1i 𝐴 ⊆ (𝐴 𝐵)

Proof of Theorem chub1i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 30745 . 2 𝐴S
3 chjcl.2 . . 3 𝐵C
43chshii 30745 . 2 𝐵S
52, 4shub1i 30892 1 𝐴 ⊆ (𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  wss 3949  (class class class)co 7413   C cch 30447   chj 30451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194  ax-hilex 30517  ax-hfvadd 30518  ax-hvcom 30519  ax-hvass 30520  ax-hv0cl 30521  ax-hvaddid 30522  ax-hfvmul 30523  ax-hvmulid 30524  ax-hvmulass 30525  ax-hvdistr1 30526  ax-hvdistr2 30527  ax-hvmul0 30528  ax-hfi 30597  ax-his1 30600  ax-his2 30601  ax-his3 30602  ax-his4 30603  ax-hcompl 30720
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-2 12281  df-3 12282  df-4 12283  df-5 12284  df-6 12285  df-7 12286  df-8 12287  df-9 12288  df-n0 12479  df-z 12565  df-dec 12684  df-uz 12829  df-q 12939  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-icc 13337  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14034  df-hash 14297  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-starv 17218  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-unif 17226  df-hom 17227  df-cco 17228  df-rest 17374  df-topn 17375  df-0g 17393  df-gsum 17394  df-topgen 17395  df-pt 17396  df-prds 17399  df-xrs 17454  df-qtop 17459  df-imas 17460  df-xps 17462  df-mre 17536  df-mrc 17537  df-acs 17539  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18708  df-mulg 18989  df-cntz 19224  df-cmn 19693  df-psmet 21138  df-xmet 21139  df-met 21140  df-bl 21141  df-mopn 21142  df-cnfld 21147  df-top 22618  df-topon 22635  df-topsp 22657  df-bases 22671  df-cn 22953  df-cnp 22954  df-lm 22955  df-haus 23041  df-tx 23288  df-hmeo 23481  df-xms 24048  df-ms 24049  df-tms 24050  df-cau 25006  df-grpo 30011  df-gid 30012  df-ginv 30013  df-gdiv 30014  df-ablo 30063  df-vc 30077  df-nv 30110  df-va 30113  df-ba 30114  df-sm 30115  df-0v 30116  df-vs 30117  df-nmcv 30118  df-ims 30119  df-dip 30219  df-hnorm 30486  df-hvsub 30489  df-hlim 30490  df-hcau 30491  df-sh 30725  df-ch 30739  df-oc 30770  df-shs 30826  df-chj 30828
This theorem is referenced by:  chub2i  30988  chlejb1i  30994  chdmm1i  30995  chnlei  31003  chj00i  31005  lejdii  31056  pjoml4i  31105  pjoml5i  31106  pjoml6i  31107  cmj1i  31122  qlaxr3i  31154  mayetes3i  31247  pjclem1  31713  mdslj1i  31837  mdslmd1lem1  31843  mdslmd2i  31848  mdexchi  31853  atabsi  31919
  Copyright terms: Public domain W3C validator