![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpp1 | Structured version Visualization version GIF version |
Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.) |
Ref | Expression |
---|---|
chpp1 | ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0p1nn 11683 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ) | |
2 | nnuz 12029 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1, 2 | syl6eleq 2869 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ (ℤ≥‘1)) |
4 | elfznn 12687 | . . . . . 6 ⊢ (𝑛 ∈ (1...(𝐴 + 1)) → 𝑛 ∈ ℕ) | |
5 | 4 | adantl 475 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑛 ∈ (1...(𝐴 + 1))) → 𝑛 ∈ ℕ) |
6 | vmacl 25296 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑛 ∈ (1...(𝐴 + 1))) → (Λ‘𝑛) ∈ ℝ) |
8 | 7 | recnd 10405 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑛 ∈ (1...(𝐴 + 1))) → (Λ‘𝑛) ∈ ℂ) |
9 | fveq2 6446 | . . 3 ⊢ (𝑛 = (𝐴 + 1) → (Λ‘𝑛) = (Λ‘(𝐴 + 1))) | |
10 | 3, 8, 9 | fsumm1 14887 | . 2 ⊢ (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛) = (Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛) + (Λ‘(𝐴 + 1)))) |
11 | nn0re 11652 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
12 | peano2re 10549 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
13 | chpval 25300 | . . . 4 ⊢ ((𝐴 + 1) ∈ ℝ → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛)) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛)) |
15 | nn0z 11752 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
16 | 15 | peano2zd 11837 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℤ) |
17 | flid 12928 | . . . . . 6 ⊢ ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (⌊‘(𝐴 + 1)) = (𝐴 + 1)) |
19 | 18 | oveq2d 6938 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (1...(⌊‘(𝐴 + 1))) = (1...(𝐴 + 1))) |
20 | 19 | sumeq1d 14839 | . . 3 ⊢ (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛) = Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛)) |
21 | 14, 20 | eqtrd 2814 | . 2 ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛)) |
22 | chpval 25300 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) | |
23 | 11, 22 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
24 | flid 12928 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | |
25 | 15, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → (⌊‘𝐴) = 𝐴) |
26 | nn0cn 11653 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | |
27 | ax-1cn 10330 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
28 | pncan 10628 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴) | |
29 | 26, 27, 28 | sylancl 580 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → ((𝐴 + 1) − 1) = 𝐴) |
30 | 25, 29 | eqtr4d 2817 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (⌊‘𝐴) = ((𝐴 + 1) − 1)) |
31 | 30 | oveq2d 6938 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (1...(⌊‘𝐴)) = (1...((𝐴 + 1) − 1))) |
32 | 31 | sumeq1d 14839 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛)) |
33 | 23, 32 | eqtrd 2814 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (ψ‘𝐴) = Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛)) |
34 | 33 | oveq1d 6937 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((ψ‘𝐴) + (Λ‘(𝐴 + 1))) = (Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛) + (Λ‘(𝐴 + 1)))) |
35 | 10, 21, 34 | 3eqtr4d 2824 | 1 ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ℝcr 10271 1c1 10273 + caddc 10275 − cmin 10606 ℕcn 11374 ℕ0cn0 11642 ℤcz 11728 ℤ≥cuz 11992 ...cfz 12643 ⌊cfl 12910 Σcsu 14824 Λcvma 25270 ψcchp 25271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ioc 12492 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-mod 12988 df-seq 13120 df-exp 13179 df-fac 13379 df-bc 13408 df-hash 13436 df-shft 14214 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-limsup 14610 df-clim 14627 df-rlim 14628 df-sum 14825 df-ef 15200 df-sin 15202 df-cos 15203 df-pi 15205 df-dvds 15388 df-gcd 15623 df-prm 15791 df-pc 15946 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-fbas 20139 df-fg 20140 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-lp 21348 df-perf 21349 df-cn 21439 df-cnp 21440 df-haus 21527 df-tx 21774 df-hmeo 21967 df-fil 22058 df-fm 22150 df-flim 22151 df-flf 22152 df-xms 22533 df-ms 22534 df-tms 22535 df-cncf 23089 df-limc 24067 df-dv 24068 df-log 24740 df-vma 25276 df-chp 25277 |
This theorem is referenced by: selberg2lem 25691 pntrsumo1 25706 pntpbnd1a 25726 |
Copyright terms: Public domain | W3C validator |