MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpp1 Structured version   Visualization version   GIF version

Theorem chpp1 25732
Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.)
Assertion
Ref Expression
chpp1 (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1))))

Proof of Theorem chpp1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 11937 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ)
2 nnuz 12282 . . . 4 ℕ = (ℤ‘1)
31, 2eleqtrdi 2923 . . 3 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ (ℤ‘1))
4 elfznn 12937 . . . . . 6 (𝑛 ∈ (1...(𝐴 + 1)) → 𝑛 ∈ ℕ)
54adantl 484 . . . . 5 ((𝐴 ∈ ℕ0𝑛 ∈ (1...(𝐴 + 1))) → 𝑛 ∈ ℕ)
6 vmacl 25695 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℕ0𝑛 ∈ (1...(𝐴 + 1))) → (Λ‘𝑛) ∈ ℝ)
87recnd 10669 . . 3 ((𝐴 ∈ ℕ0𝑛 ∈ (1...(𝐴 + 1))) → (Λ‘𝑛) ∈ ℂ)
9 fveq2 6670 . . 3 (𝑛 = (𝐴 + 1) → (Λ‘𝑛) = (Λ‘(𝐴 + 1)))
103, 8, 9fsumm1 15106 . 2 (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛) = (Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛) + (Λ‘(𝐴 + 1))))
11 nn0re 11907 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
12 peano2re 10813 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
13 chpval 25699 . . . 4 ((𝐴 + 1) ∈ ℝ → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛))
1411, 12, 133syl 18 . . 3 (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛))
15 nn0z 12006 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1615peano2zd 12091 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℤ)
17 flid 13179 . . . . . 6 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
1816, 17syl 17 . . . . 5 (𝐴 ∈ ℕ0 → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
1918oveq2d 7172 . . . 4 (𝐴 ∈ ℕ0 → (1...(⌊‘(𝐴 + 1))) = (1...(𝐴 + 1)))
2019sumeq1d 15058 . . 3 (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛) = Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛))
2114, 20eqtrd 2856 . 2 (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛))
22 chpval 25699 . . . . 5 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
2311, 22syl 17 . . . 4 (𝐴 ∈ ℕ0 → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
24 flid 13179 . . . . . . . 8 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2515, 24syl 17 . . . . . . 7 (𝐴 ∈ ℕ0 → (⌊‘𝐴) = 𝐴)
26 nn0cn 11908 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
27 ax-1cn 10595 . . . . . . . 8 1 ∈ ℂ
28 pncan 10892 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
2926, 27, 28sylancl 588 . . . . . . 7 (𝐴 ∈ ℕ0 → ((𝐴 + 1) − 1) = 𝐴)
3025, 29eqtr4d 2859 . . . . . 6 (𝐴 ∈ ℕ0 → (⌊‘𝐴) = ((𝐴 + 1) − 1))
3130oveq2d 7172 . . . . 5 (𝐴 ∈ ℕ0 → (1...(⌊‘𝐴)) = (1...((𝐴 + 1) − 1)))
3231sumeq1d 15058 . . . 4 (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛))
3323, 32eqtrd 2856 . . 3 (𝐴 ∈ ℕ0 → (ψ‘𝐴) = Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛))
3433oveq1d 7171 . 2 (𝐴 ∈ ℕ0 → ((ψ‘𝐴) + (Λ‘(𝐴 + 1))) = (Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛) + (Λ‘(𝐴 + 1))))
3510, 21, 343eqtr4d 2866 1 (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538   + caddc 10540  cmin 10870  cn 11638  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  cfl 13161  Σcsu 15042  Λcvma 25669  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-vma 25675  df-chp 25676
This theorem is referenced by:  selberg2lem  26126  pntrsumo1  26141  pntpbnd1a  26161
  Copyright terms: Public domain W3C validator