![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpp1 | Structured version Visualization version GIF version |
Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.) |
Ref | Expression |
---|---|
chpp1 | ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0p1nn 12563 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ) | |
2 | nnuz 12919 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1, 2 | eleqtrdi 2849 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ (ℤ≥‘1)) |
4 | elfznn 13590 | . . . . . 6 ⊢ (𝑛 ∈ (1...(𝐴 + 1)) → 𝑛 ∈ ℕ) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑛 ∈ (1...(𝐴 + 1))) → 𝑛 ∈ ℕ) |
6 | vmacl 27176 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑛 ∈ (1...(𝐴 + 1))) → (Λ‘𝑛) ∈ ℝ) |
8 | 7 | recnd 11287 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑛 ∈ (1...(𝐴 + 1))) → (Λ‘𝑛) ∈ ℂ) |
9 | fveq2 6907 | . . 3 ⊢ (𝑛 = (𝐴 + 1) → (Λ‘𝑛) = (Λ‘(𝐴 + 1))) | |
10 | 3, 8, 9 | fsumm1 15784 | . 2 ⊢ (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛) = (Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛) + (Λ‘(𝐴 + 1)))) |
11 | nn0re 12533 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
12 | peano2re 11432 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
13 | chpval 27180 | . . . 4 ⊢ ((𝐴 + 1) ∈ ℝ → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛)) | |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛)) |
15 | nn0z 12636 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
16 | 15 | peano2zd 12723 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℤ) |
17 | flid 13845 | . . . . . 6 ⊢ ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (⌊‘(𝐴 + 1)) = (𝐴 + 1)) |
19 | 18 | oveq2d 7447 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (1...(⌊‘(𝐴 + 1))) = (1...(𝐴 + 1))) |
20 | 19 | sumeq1d 15733 | . . 3 ⊢ (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(⌊‘(𝐴 + 1)))(Λ‘𝑛) = Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛)) |
21 | 14, 20 | eqtrd 2775 | . 2 ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = Σ𝑛 ∈ (1...(𝐴 + 1))(Λ‘𝑛)) |
22 | chpval 27180 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) | |
23 | 11, 22 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛)) |
24 | flid 13845 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) | |
25 | 15, 24 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → (⌊‘𝐴) = 𝐴) |
26 | nn0cn 12534 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) | |
27 | ax-1cn 11211 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
28 | pncan 11512 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴) | |
29 | 26, 27, 28 | sylancl 586 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → ((𝐴 + 1) − 1) = 𝐴) |
30 | 25, 29 | eqtr4d 2778 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → (⌊‘𝐴) = ((𝐴 + 1) − 1)) |
31 | 30 | oveq2d 7447 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → (1...(⌊‘𝐴)) = (1...((𝐴 + 1) − 1))) |
32 | 31 | sumeq1d 15733 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛)) |
33 | 23, 32 | eqtrd 2775 | . . 3 ⊢ (𝐴 ∈ ℕ0 → (ψ‘𝐴) = Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛)) |
34 | 33 | oveq1d 7446 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((ψ‘𝐴) + (Λ‘(𝐴 + 1))) = (Σ𝑛 ∈ (1...((𝐴 + 1) − 1))(Λ‘𝑛) + (Λ‘(𝐴 + 1)))) |
35 | 10, 21, 34 | 3eqtr4d 2785 | 1 ⊢ (𝐴 ∈ ℕ0 → (ψ‘(𝐴 + 1)) = ((ψ‘𝐴) + (Λ‘(𝐴 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 1c1 11154 + caddc 11156 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 ⌊cfl 13827 Σcsu 15719 Λcvma 27150 ψcchp 27151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-vma 27156 df-chp 27157 |
This theorem is referenced by: selberg2lem 27609 pntrsumo1 27624 pntpbnd1a 27644 |
Copyright terms: Public domain | W3C validator |