Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval2 Structured version   Visualization version   GIF version

Theorem chpval2 25902
 Description: Express the second Chebyshev function directly as a sum over the primes less than 𝐴 (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpval2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chpval2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpval 25807 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
2 fveq2 6659 . . 3 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
3 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4 elfznn 12986 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
54adantl 486 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
6 vmacl 25803 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
87recnd 10708 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
9 simprr 773 . . 3 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
102, 3, 8, 9fsumvma2 25898 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)))
11 simpr 489 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
1211elin2d 4105 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
13 elfznn 12986 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
14 vmappw 25801 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1512, 13, 14syl2an 599 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1615sumeq2dv 15109 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
17 fzfid 13391 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
18 prmuz2 16093 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
19 eluzelre 12294 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
20 eluz2gt1 12361 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
2119, 20rplogcld 25320 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
2212, 18, 213syl 18 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
2322rpcnd 12475 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
24 fsumconst 15194 . . . . . 6 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
2517, 23, 24syl2anc 588 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
26 ppisval 25789 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
27 inss1 4134 . . . . . . . . . . . . . 14 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
2826, 27eqsstrdi 3947 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ (2...(⌊‘𝐴)))
2928sselda 3893 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...(⌊‘𝐴)))
30 elfzuz2 12962 . . . . . . . . . . . 12 (𝑝 ∈ (2...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘2))
3129, 30syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ‘2))
32 simpl 487 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
33 0red 10683 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 ∈ ℝ)
34 2re 11749 . . . . . . . . . . . . . 14 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ∈ ℝ)
36 2pos 11778 . . . . . . . . . . . . . 14 0 < 2
3736a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 2)
38 eluzle 12296 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ (⌊‘𝐴))
39 2z 12054 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
40 flge 13225 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4139, 40mpan2 691 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4238, 41syl5ibr 249 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ 𝐴))
4342imp 411 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ≤ 𝐴)
4433, 35, 32, 37, 43ltletrd 10839 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 𝐴)
4532, 44elrpd 12470 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ+)
4631, 45syldan 595 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ+)
4746relogcld 25314 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
4847, 22rerpdivcld 12504 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
49 1red 10681 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 ∈ ℝ)
50 1lt2 11846 . . . . . . . . . . . . . 14 1 < 2
5150a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 2)
5249, 35, 32, 51, 43ltletrd 10839 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 𝐴)
5331, 52syldan 595 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
54 rplogcl 25295 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
5553, 54syldan 595 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
5655, 22rpdivcld 12490 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
5756rpge0d 12477 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
58 flge0nn0 13240 . . . . . . . 8 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
5948, 57, 58syl2anc 588 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
60 hashfz1 13757 . . . . . . 7 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6159, 60syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6261oveq1d 7166 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
6359nn0cnd 11997 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
6463, 23mulcomd 10701 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6525, 62, 643eqtrd 2798 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6616, 65eqtrd 2794 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6766sumeq2dv 15109 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
681, 10, 673eqtrd 2798 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ∩ cin 3858   class class class wbr 5033  ‘cfv 6336  (class class class)co 7151  Fincfn 8528  ℂcc 10574  ℝcr 10575  0cc0 10576  1c1 10577   · cmul 10581   < clt 10714   ≤ cle 10715   / cdiv 11336  ℕcn 11675  2c2 11730  ℕ0cn0 11935  ℤcz 12021  ℤ≥cuz 12283  ℝ+crp 12431  [,]cicc 12783  ...cfz 12940  ⌊cfl 13210  ↑cexp 13480  ♯chash 13741  Σcsu 15091  ℙcprime 16068  logclog 25246  Λcvma 25777  ψcchp 25778 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654  ax-addf 10655  ax-mulf 10656 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-fi 8909  df-sup 8940  df-inf 8941  df-oi 9008  df-dju 9364  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-q 12390  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-ioo 12784  df-ioc 12785  df-ico 12786  df-icc 12787  df-fz 12941  df-fzo 13084  df-fl 13212  df-mod 13288  df-seq 13420  df-exp 13481  df-fac 13685  df-bc 13714  df-hash 13742  df-shft 14475  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-limsup 14877  df-clim 14894  df-rlim 14895  df-sum 15092  df-ef 15470  df-sin 15472  df-cos 15473  df-pi 15475  df-dvds 15657  df-gcd 15895  df-prm 16069  df-pc 16230  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-rest 16755  df-topn 16756  df-0g 16774  df-gsum 16775  df-topgen 16776  df-pt 16777  df-prds 16780  df-xrs 16834  df-qtop 16839  df-imas 16840  df-xps 16842  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-submnd 18024  df-mulg 18293  df-cntz 18515  df-cmn 18976  df-psmet 20159  df-xmet 20160  df-met 20161  df-bl 20162  df-mopn 20163  df-fbas 20164  df-fg 20165  df-cnfld 20168  df-top 21595  df-topon 21612  df-topsp 21634  df-bases 21647  df-cld 21720  df-ntr 21721  df-cls 21722  df-nei 21799  df-lp 21837  df-perf 21838  df-cn 21928  df-cnp 21929  df-haus 22016  df-tx 22263  df-hmeo 22456  df-fil 22547  df-fm 22639  df-flim 22640  df-flf 22641  df-xms 23023  df-ms 23024  df-tms 23025  df-cncf 23580  df-limc 24566  df-dv 24567  df-log 25248  df-vma 25783  df-chp 25784 This theorem is referenced by:  chpchtsum  25903  chpub  25904
 Copyright terms: Public domain W3C validator