Step | Hyp | Ref
| Expression |
1 | | chpval 26176 |
. 2
⊢ (𝐴 ∈ ℝ →
(ψ‘𝐴) =
Σ𝑛 ∈
(1...(⌊‘𝐴))(Λ‘𝑛)) |
2 | | fveq2 6756 |
. . 3
⊢ (𝑛 = (𝑝↑𝑘) → (Λ‘𝑛) = (Λ‘(𝑝↑𝑘))) |
3 | | id 22 |
. . 3
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ) |
4 | | elfznn 13214 |
. . . . . 6
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
5 | 4 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ 𝑛 ∈
ℕ) |
6 | | vmacl 26172 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (Λ‘𝑛)
∈ ℝ) |
8 | 7 | recnd 10934 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (Λ‘𝑛)
∈ ℂ) |
9 | | simprr 769 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝑛 ∈
(1...(⌊‘𝐴))
∧ (Λ‘𝑛) =
0)) → (Λ‘𝑛) = 0) |
10 | 2, 3, 8, 9 | fsumvma2 26267 |
. 2
⊢ (𝐴 ∈ ℝ →
Σ𝑛 ∈
(1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝↑𝑘))) |
11 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) |
12 | 11 | elin2d 4129 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ) |
13 | | elfznn 13214 |
. . . . . 6
⊢ (𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ) |
14 | | vmappw 26170 |
. . . . . 6
⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) →
(Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
15 | 12, 13, 14 | syl2an 595 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) →
(Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
16 | 15 | sumeq2dv 15343 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝↑𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝)) |
17 | | fzfid 13621 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin) |
18 | | prmuz2 16329 |
. . . . . . . 8
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
(ℤ≥‘2)) |
19 | | eluzelre 12522 |
. . . . . . . . 9
⊢ (𝑝 ∈
(ℤ≥‘2) → 𝑝 ∈ ℝ) |
20 | | eluz2gt1 12589 |
. . . . . . . . 9
⊢ (𝑝 ∈
(ℤ≥‘2) → 1 < 𝑝) |
21 | 19, 20 | rplogcld 25689 |
. . . . . . . 8
⊢ (𝑝 ∈
(ℤ≥‘2) → (log‘𝑝) ∈
ℝ+) |
22 | 12, 18, 21 | 3syl 18 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℝ+) |
23 | 22 | rpcnd 12703 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
24 | | fsumconst 15430 |
. . . . . 6
⊢
(((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) →
Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) =
((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝))) |
25 | 17, 23, 24 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) =
((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝))) |
26 | | ppisval 26158 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ →
((0[,]𝐴) ∩ ℙ) =
((2...(⌊‘𝐴))
∩ ℙ)) |
27 | | inss1 4159 |
. . . . . . . . . . . . . 14
⊢
((2...(⌊‘𝐴)) ∩ ℙ) ⊆
(2...(⌊‘𝐴)) |
28 | 26, 27 | eqsstrdi 3971 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℝ →
((0[,]𝐴) ∩ ℙ)
⊆ (2...(⌊‘𝐴))) |
29 | 28 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...(⌊‘𝐴))) |
30 | | elfzuz2 13190 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈
(2...(⌊‘𝐴))
→ (⌊‘𝐴)
∈ (ℤ≥‘2)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘𝐴) ∈
(ℤ≥‘2)) |
32 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 𝐴 ∈ ℝ) |
33 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 0 ∈ ℝ) |
34 | | 2re 11977 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 2 ∈ ℝ) |
36 | | 2pos 12006 |
. . . . . . . . . . . . . 14
⊢ 0 <
2 |
37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 0 < 2) |
38 | | eluzle 12524 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘𝐴)
∈ (ℤ≥‘2) → 2 ≤ (⌊‘𝐴)) |
39 | | 2z 12282 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
40 | | flge 13453 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 2 ∈
ℤ) → (2 ≤ 𝐴
↔ 2 ≤ (⌊‘𝐴))) |
41 | 39, 40 | mpan2 687 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ → (2 ≤
𝐴 ↔ 2 ≤
(⌊‘𝐴))) |
42 | 38, 41 | syl5ibr 245 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) ∈
(ℤ≥‘2) → 2 ≤ 𝐴)) |
43 | 42 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 2 ≤ 𝐴) |
44 | 33, 35, 32, 37, 43 | ltletrd 11065 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 0 < 𝐴) |
45 | 32, 44 | elrpd 12698 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 𝐴 ∈
ℝ+) |
46 | 31, 45 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈
ℝ+) |
47 | 46 | relogcld 25683 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈
ℝ) |
48 | 47, 22 | rerpdivcld 12732 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈
ℝ) |
49 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 1 ∈ ℝ) |
50 | | 1lt2 12074 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
51 | 50 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 1 < 2) |
52 | 49, 35, 32, 51, 43 | ltletrd 11065 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) ∈
(ℤ≥‘2)) → 1 < 𝐴) |
53 | 31, 52 | syldan 590 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴) |
54 | | rplogcl 25664 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 1 <
𝐴) → (log‘𝐴) ∈
ℝ+) |
55 | 53, 54 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈
ℝ+) |
56 | 55, 22 | rpdivcld 12718 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈
ℝ+) |
57 | 56 | rpge0d 12705 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤
((log‘𝐴) /
(log‘𝑝))) |
58 | | flge0nn0 13468 |
. . . . . . . 8
⊢
((((log‘𝐴) /
(log‘𝑝)) ∈
ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈
ℕ0) |
59 | 48, 57, 58 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈
ℕ0) |
60 | | hashfz1 13988 |
. . . . . . 7
⊢
((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 →
(♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝)))) |
61 | 59, 60 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝)))) |
62 | 61 | oveq1d 7270 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝))) |
63 | 59 | nn0cnd 12225 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
(⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ) |
64 | 63, 23 | mulcomd 10927 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) →
((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))) |
65 | 25, 62, 64 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))) |
66 | 16, 65 | eqtrd 2778 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝↑𝑘)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))) |
67 | 66 | sumeq2dv 15343 |
. 2
⊢ (𝐴 ∈ ℝ →
Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈
(1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝↑𝑘)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) ·
(⌊‘((log‘𝐴) / (log‘𝑝))))) |
68 | 1, 10, 67 | 3eqtrd 2782 |
1
⊢ (𝐴 ∈ ℝ →
(ψ‘𝐴) =
Σ𝑝 ∈ ((0[,]𝐴) ∩
ℙ)((log‘𝑝)
· (⌊‘((log‘𝐴) / (log‘𝑝))))) |