MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval2 Structured version   Visualization version   GIF version

Theorem chpval2 25480
Description: Express the second Chebyshev function directly as a sum over the primes less than 𝐴 (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpval2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
Distinct variable group:   𝐴,𝑝

Proof of Theorem chpval2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpval 25385 . 2 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛))
2 fveq2 6545 . . 3 (𝑛 = (𝑝𝑘) → (Λ‘𝑛) = (Λ‘(𝑝𝑘)))
3 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4 elfznn 12790 . . . . . 6 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
54adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
6 vmacl 25381 . . . . 5 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
87recnd 10522 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
9 simprr 769 . . 3 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0)
102, 3, 8, 9fsumvma2 25476 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(Λ‘𝑛) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)))
11 simpr 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
1211elin2d 4103 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
13 elfznn 12790 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
14 vmappw 25379 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1512, 13, 14syl2an 595 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
1615sumeq2dv 14897 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝))
17 fzfid 13195 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin)
18 prmuz2 15873 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
19 eluzelre 12108 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
20 eluz2gt1 12173 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
2119, 20rplogcld 24897 . . . . . . . 8 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
2212, 18, 213syl 18 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
2322rpcnd 12287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
24 fsumconst 14982 . . . . . 6 (((1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ Fin ∧ (log‘𝑝) ∈ ℂ) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
2517, 23, 24syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)))
26 ppisval 25367 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
27 inss1 4131 . . . . . . . . . . . . . 14 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
2826, 27syl6eqss 3948 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ (2...(⌊‘𝐴)))
2928sselda 3895 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (2...(⌊‘𝐴)))
30 elfzuz2 12766 . . . . . . . . . . . 12 (𝑝 ∈ (2...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ‘2))
3129, 30syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ‘2))
32 simpl 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
33 0red 10497 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 ∈ ℝ)
34 2re 11565 . . . . . . . . . . . . . 14 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ∈ ℝ)
36 2pos 11594 . . . . . . . . . . . . . 14 0 < 2
3736a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 2)
38 eluzle 12110 . . . . . . . . . . . . . . 15 ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ (⌊‘𝐴))
39 2z 11868 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
40 flge 13029 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4139, 40mpan2 687 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ 2 ≤ (⌊‘𝐴)))
4238, 41syl5ibr 247 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → ((⌊‘𝐴) ∈ (ℤ‘2) → 2 ≤ 𝐴))
4342imp 407 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 2 ≤ 𝐴)
4433, 35, 32, 37, 43ltletrd 10653 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 0 < 𝐴)
4532, 44elrpd 12282 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ ℝ+)
4631, 45syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ+)
4746relogcld 24891 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
4847, 22rerpdivcld 12316 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
49 1red 10495 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 ∈ ℝ)
50 1lt2 11662 . . . . . . . . . . . . . 14 1 < 2
5150a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 2)
5249, 35, 32, 51, 43ltletrd 10653 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ (ℤ‘2)) → 1 < 𝐴)
5331, 52syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝐴)
54 rplogcl 24872 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
5553, 54syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ+)
5655, 22rpdivcld 12302 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ+)
5756rpge0d 12289 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 0 ≤ ((log‘𝐴) / (log‘𝑝)))
58 flge0nn0 13044 . . . . . . . 8 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 0 ≤ ((log‘𝐴) / (log‘𝑝))) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
5948, 57, 58syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0)
60 hashfz1 13560 . . . . . . 7 ((⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6159, 60syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) = (⌊‘((log‘𝐴) / (log‘𝑝))))
6261oveq1d 7038 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((♯‘(1...(⌊‘((log‘𝐴) / (log‘𝑝))))) · (log‘𝑝)) = ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)))
6359nn0cnd 11811 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℂ)
6463, 23mulcomd 10515 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((⌊‘((log‘𝐴) / (log‘𝑝))) · (log‘𝑝)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6525, 62, 643eqtrd 2837 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(log‘𝑝) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6616, 65eqtrd 2833 . . 3 ((𝐴 ∈ ℝ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
6766sumeq2dv 14897 . 2 (𝐴 ∈ ℝ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))(Λ‘(𝑝𝑘)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
681, 10, 673eqtrd 2837 1 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  cin 3864   class class class wbr 4968  cfv 6232  (class class class)co 7023  Fincfn 8364  cc 10388  cr 10389  0cc0 10390  1c1 10391   · cmul 10395   < clt 10528  cle 10529   / cdiv 11151  cn 11492  2c2 11546  0cn0 11751  cz 11835  cuz 12097  +crp 12243  [,]cicc 12595  ...cfz 12746  cfl 13014  cexp 13283  chash 13544  Σcsu 14880  cprime 15848  logclog 24823  Λcvma 25355  ψcchp 25356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ioc 12597  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261  df-pi 15263  df-dvds 15445  df-gcd 15681  df-prm 15849  df-pc 16007  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cn 21523  df-cnp 21524  df-haus 21611  df-tx 21858  df-hmeo 22051  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173  df-limc 24151  df-dv 24152  df-log 24825  df-vma 25361  df-chp 25362
This theorem is referenced by:  chpchtsum  25481  chpub  25482
  Copyright terms: Public domain W3C validator