![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chtlepsi | Structured version Visualization version GIF version |
Description: The first Chebyshev function is less than the second. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
chtlepsi | β’ (π΄ β β β (ΞΈβπ΄) β€ (Οβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 13943 | . . 3 β’ (π΄ β β β (1...(ββπ΄)) β Fin) | |
2 | elfznn 13535 | . . . . 5 β’ (π β (1...(ββπ΄)) β π β β) | |
3 | 2 | adantl 481 | . . . 4 β’ ((π΄ β β β§ π β (1...(ββπ΄))) β π β β) |
4 | vmacl 26859 | . . . 4 β’ (π β β β (Ξβπ) β β) | |
5 | 3, 4 | syl 17 | . . 3 β’ ((π΄ β β β§ π β (1...(ββπ΄))) β (Ξβπ) β β) |
6 | vmage0 26862 | . . . 4 β’ (π β β β 0 β€ (Ξβπ)) | |
7 | 3, 6 | syl 17 | . . 3 β’ ((π΄ β β β§ π β (1...(ββπ΄))) β 0 β€ (Ξβπ)) |
8 | ppisval 26845 | . . . 4 β’ (π΄ β β β ((0[,]π΄) β© β) = ((2...(ββπ΄)) β© β)) | |
9 | inss1 4228 | . . . . 5 β’ ((2...(ββπ΄)) β© β) β (2...(ββπ΄)) | |
10 | 2eluzge1 12883 | . . . . . 6 β’ 2 β (β€β₯β1) | |
11 | fzss1 13545 | . . . . . 6 β’ (2 β (β€β₯β1) β (2...(ββπ΄)) β (1...(ββπ΄))) | |
12 | 10, 11 | mp1i 13 | . . . . 5 β’ (π΄ β β β (2...(ββπ΄)) β (1...(ββπ΄))) |
13 | 9, 12 | sstrid 3993 | . . . 4 β’ (π΄ β β β ((2...(ββπ΄)) β© β) β (1...(ββπ΄))) |
14 | 8, 13 | eqsstrd 4020 | . . 3 β’ (π΄ β β β ((0[,]π΄) β© β) β (1...(ββπ΄))) |
15 | 1, 5, 7, 14 | fsumless 15747 | . 2 β’ (π΄ β β β Ξ£π β ((0[,]π΄) β© β)(Ξβπ) β€ Ξ£π β (1...(ββπ΄))(Ξβπ)) |
16 | chtval 26851 | . . 3 β’ (π΄ β β β (ΞΈβπ΄) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) | |
17 | simpr 484 | . . . . . 6 β’ ((π΄ β β β§ π β ((0[,]π΄) β© β)) β π β ((0[,]π΄) β© β)) | |
18 | 17 | elin2d 4199 | . . . . 5 β’ ((π΄ β β β§ π β ((0[,]π΄) β© β)) β π β β) |
19 | vmaprm 26858 | . . . . 5 β’ (π β β β (Ξβπ) = (logβπ)) | |
20 | 18, 19 | syl 17 | . . . 4 β’ ((π΄ β β β§ π β ((0[,]π΄) β© β)) β (Ξβπ) = (logβπ)) |
21 | 20 | sumeq2dv 15654 | . . 3 β’ (π΄ β β β Ξ£π β ((0[,]π΄) β© β)(Ξβπ) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) |
22 | 16, 21 | eqtr4d 2774 | . 2 β’ (π΄ β β β (ΞΈβπ΄) = Ξ£π β ((0[,]π΄) β© β)(Ξβπ)) |
23 | chpval 26863 | . 2 β’ (π΄ β β β (Οβπ΄) = Ξ£π β (1...(ββπ΄))(Ξβπ)) | |
24 | 15, 22, 23 | 3brtr4d 5180 | 1 β’ (π΄ β β β (ΞΈβπ΄) β€ (Οβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β© cin 3947 β wss 3948 class class class wbr 5148 βcfv 6543 (class class class)co 7412 βcr 11112 0cc0 11113 1c1 11114 β€ cle 11254 βcn 12217 2c2 12272 β€β₯cuz 12827 [,]cicc 13332 ...cfz 13489 βcfl 13760 Ξ£csu 15637 βcprime 16613 logclog 26300 ΞΈccht 26832 Ξcvma 26833 Οcchp 26834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ioc 13334 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15019 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-ef 16016 df-sin 16018 df-cos 16019 df-pi 16021 df-dvds 16203 df-gcd 16441 df-prm 16614 df-pc 16775 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cncf 24619 df-limc 25616 df-dv 25617 df-log 26302 df-cht 26838 df-vma 26839 df-chp 26840 |
This theorem is referenced by: chprpcl 26947 chteq0 26949 chpchtlim 27219 |
Copyright terms: Public domain | W3C validator |