MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval2 Structured version   Visualization version   GIF version

Theorem pntsval2 26629
Description: The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
Assertion
Ref Expression
pntsval2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Distinct variable groups:   𝑖,𝑎,𝑚,𝑛,𝑦,𝐴   𝑆,𝑚,𝑛,𝑦
Allowed substitution hints:   𝑆(𝑖,𝑎)

Proof of Theorem pntsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pntsval.1 . . 3 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
21pntsval 26625 . 2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
3 elfznn 13214 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 vmacl 26172 . . . . . 6 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
64, 5syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
76recnd 10934 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
84nnrpd 12699 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
98relogcld 25683 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
109recnd 10934 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
11 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
1211, 4nndivred 11957 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ)
13 chpcl 26178 . . . . . 6 ((𝐴 / 𝑛) ∈ ℝ → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1514recnd 10934 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℂ)
167, 10, 15adddid 10930 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = (((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
1716sumeq2dv 15343 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
18 fveq2 6756 . . . . . . 7 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
19 oveq2 7263 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴 / 𝑛) = (𝐴 / 𝑚))
2019fveq2d 6760 . . . . . . 7 (𝑛 = 𝑚 → (ψ‘(𝐴 / 𝑛)) = (ψ‘(𝐴 / 𝑚)))
2118, 20oveq12d 7273 . . . . . 6 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))))
2221cbvsumv 15336 . . . . 5 Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚)))
23 fzfid 13621 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑚))) ∈ Fin)
24 elfznn 13214 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
2524adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
26 vmacl 26172 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℝ)
2827recnd 10934 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℂ)
29 elfznn 13214 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚))) → 𝑘 ∈ ℕ)
3029adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℕ)
31 vmacl 26172 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℝ)
3332recnd 10934 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℂ)
3423, 28, 33fsummulc2 15424 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
35 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
3635, 25nndivred 11957 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ)
37 chpval 26176 . . . . . . . . . 10 ((𝐴 / 𝑚) ∈ ℝ → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3836, 37syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3938oveq2d 7271 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)))
4030nncnd 11919 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℂ)
4124ad2antlr 723 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℕ)
4241nncnd 11919 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℂ)
4341nnne0d 11953 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ≠ 0)
4440, 42, 43divcan3d 11686 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘)
4544fveq2d 6760 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘))
4645oveq2d 7271 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘)))
4746sumeq2dv 15343 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
4834, 39, 473eqtr4d 2788 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
4948sumeq2dv 15343 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
50 fvoveq1 7278 . . . . . . . 8 (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚)))
5150oveq2d 7271 . . . . . . 7 (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
52 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
53 ssrab2 4009 . . . . . . . . . . . 12 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
54 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5553, 54sselid 3915 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
5655, 26syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
57 dvdsdivcl 15953 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
584, 57sylan 579 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5953, 58sselid 3915 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
60 vmacl 26172 . . . . . . . . . . 11 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6159, 60syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6256, 61remulcld 10936 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
6362recnd 10934 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6463anasss 466 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6551, 52, 64dvdsflsumcom 26242 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
6649, 65eqtr4d 2781 . . . . 5 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6722, 66syl5eq 2791 . . . 4 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6867oveq2d 7271 . . 3 (𝐴 ∈ ℝ → (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
69 fzfid 13621 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
707, 10mulcld 10926 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
717, 15mulcld 10926 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) ∈ ℂ)
7269, 70, 71fsumadd 15380 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
73 fzfid 13621 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
74 dvdsssfz1 15955 . . . . . . . 8 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
754, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7673, 75ssfid 8971 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7776, 62fsumrecl 15374 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
7877recnd 10934 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
7969, 70, 78fsumadd 15380 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
8068, 72, 793eqtr4d 2788 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
812, 17, 803eqtrd 2782 1 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  cn 11903  ...cfz 13168  cfl 13438  Σcsu 15325  cdvds 15891  logclog 25615  Λcvma 26146  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-vma 26152  df-chp 26153
This theorem is referenced by:  pntrlog2bndlem1  26630  pntrlog2bndlem4  26633
  Copyright terms: Public domain W3C validator