MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval2 Structured version   Visualization version   GIF version

Theorem pntsval2 26924
Description: The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
Assertion
Ref Expression
pntsval2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Distinct variable groups:   𝑖,𝑎,𝑚,𝑛,𝑦,𝐴   𝑆,𝑚,𝑛,𝑦
Allowed substitution hints:   𝑆(𝑖,𝑎)

Proof of Theorem pntsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pntsval.1 . . 3 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
21pntsval 26920 . 2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
3 elfznn 13470 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 vmacl 26467 . . . . . 6 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
64, 5syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
76recnd 11183 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
84nnrpd 12955 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
98relogcld 25978 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
109recnd 11183 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
11 simpl 483 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
1211, 4nndivred 12207 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ)
13 chpcl 26473 . . . . . 6 ((𝐴 / 𝑛) ∈ ℝ → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1514recnd 11183 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℂ)
167, 10, 15adddid 11179 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = (((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
1716sumeq2dv 15588 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
18 fveq2 6842 . . . . . . 7 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
19 oveq2 7365 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴 / 𝑛) = (𝐴 / 𝑚))
2019fveq2d 6846 . . . . . . 7 (𝑛 = 𝑚 → (ψ‘(𝐴 / 𝑛)) = (ψ‘(𝐴 / 𝑚)))
2118, 20oveq12d 7375 . . . . . 6 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))))
2221cbvsumv 15581 . . . . 5 Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚)))
23 fzfid 13878 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑚))) ∈ Fin)
24 elfznn 13470 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
2524adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
26 vmacl 26467 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℝ)
2827recnd 11183 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℂ)
29 elfznn 13470 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚))) → 𝑘 ∈ ℕ)
3029adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℕ)
31 vmacl 26467 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℝ)
3332recnd 11183 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℂ)
3423, 28, 33fsummulc2 15669 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
35 simpl 483 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
3635, 25nndivred 12207 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ)
37 chpval 26471 . . . . . . . . . 10 ((𝐴 / 𝑚) ∈ ℝ → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3836, 37syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3938oveq2d 7373 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)))
4030nncnd 12169 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℂ)
4124ad2antlr 725 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℕ)
4241nncnd 12169 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℂ)
4341nnne0d 12203 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ≠ 0)
4440, 42, 43divcan3d 11936 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘)
4544fveq2d 6846 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘))
4645oveq2d 7373 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘)))
4746sumeq2dv 15588 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
4834, 39, 473eqtr4d 2786 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
4948sumeq2dv 15588 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
50 fvoveq1 7380 . . . . . . . 8 (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚)))
5150oveq2d 7373 . . . . . . 7 (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
52 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
53 ssrab2 4037 . . . . . . . . . . . 12 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
54 simpr 485 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5553, 54sselid 3942 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
5655, 26syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
57 dvdsdivcl 16198 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
584, 57sylan 580 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5953, 58sselid 3942 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
60 vmacl 26467 . . . . . . . . . . 11 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6159, 60syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6256, 61remulcld 11185 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
6362recnd 11183 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6463anasss 467 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6551, 52, 64dvdsflsumcom 26537 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
6649, 65eqtr4d 2779 . . . . 5 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6722, 66eqtrid 2788 . . . 4 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6867oveq2d 7373 . . 3 (𝐴 ∈ ℝ → (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
69 fzfid 13878 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
707, 10mulcld 11175 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
717, 15mulcld 11175 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) ∈ ℂ)
7269, 70, 71fsumadd 15625 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
73 fzfid 13878 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
74 dvdsssfz1 16200 . . . . . . . 8 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
754, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7673, 75ssfid 9211 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7776, 62fsumrecl 15619 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
7877recnd 11183 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
7969, 70, 78fsumadd 15625 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
8068, 72, 793eqtr4d 2786 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
812, 17, 803eqtrd 2780 1 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   + caddc 11054   · cmul 11056   / cdiv 11812  cn 12153  ...cfz 13424  cfl 13695  Σcsu 15570  cdvds 16136  logclog 25910  Λcvma 26441  ψcchp 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-vma 26447  df-chp 26448
This theorem is referenced by:  pntrlog2bndlem1  26925  pntrlog2bndlem4  26928
  Copyright terms: Public domain W3C validator