MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntsval2 Structured version   Visualization version   GIF version

Theorem pntsval2 25556
Description: The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
Assertion
Ref Expression
pntsval2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Distinct variable groups:   𝑖,𝑎,𝑚,𝑛,𝑦,𝐴   𝑆,𝑚,𝑛,𝑦
Allowed substitution hints:   𝑆(𝑖,𝑎)

Proof of Theorem pntsval2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pntsval.1 . . 3 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
21pntsval 25552 . 2 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))))
3 elfznn 12577 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
43adantl 473 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
5 vmacl 25135 . . . . . 6 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
64, 5syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℝ)
76recnd 10322 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑛) ∈ ℂ)
84nnrpd 12068 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
98relogcld 24660 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
109recnd 10322 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
11 simpl 474 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
1211, 4nndivred 11326 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑛) ∈ ℝ)
13 chpcl 25141 . . . . . 6 ((𝐴 / 𝑛) ∈ ℝ → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℝ)
1514recnd 10322 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑛)) ∈ ℂ)
167, 10, 15adddid 10318 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = (((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
1716sumeq2dv 14720 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
18 fveq2 6375 . . . . . . 7 (𝑛 = 𝑚 → (Λ‘𝑛) = (Λ‘𝑚))
19 oveq2 6850 . . . . . . . 8 (𝑛 = 𝑚 → (𝐴 / 𝑛) = (𝐴 / 𝑚))
2019fveq2d 6379 . . . . . . 7 (𝑛 = 𝑚 → (ψ‘(𝐴 / 𝑛)) = (ψ‘(𝐴 / 𝑚)))
2118, 20oveq12d 6860 . . . . . 6 (𝑛 = 𝑚 → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))))
2221cbvsumv 14713 . . . . 5 Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚)))
23 fzfid 12980 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑚))) ∈ Fin)
24 elfznn 12577 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
2524adantl 473 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
26 vmacl 25135 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℝ)
2827recnd 10322 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑚) ∈ ℂ)
29 elfznn 12577 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚))) → 𝑘 ∈ ℕ)
3029adantl 473 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℕ)
31 vmacl 25135 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
3230, 31syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℝ)
3332recnd 10322 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘𝑘) ∈ ℂ)
3423, 28, 33fsummulc2 14802 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
35 simpl 474 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
3635, 25nndivred 11326 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ)
37 chpval 25139 . . . . . . . . . 10 ((𝐴 / 𝑚) ∈ ℝ → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3836, 37syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → (ψ‘(𝐴 / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘))
3938oveq2d 6858 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))(Λ‘𝑘)))
4030nncnd 11292 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑘 ∈ ℂ)
4124ad2antlr 718 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℕ)
4241nncnd 11292 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ∈ ℂ)
4341nnne0d 11322 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → 𝑚 ≠ 0)
4440, 42, 43divcan3d 11060 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘)
4544fveq2d 6379 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘))
4645oveq2d 6858 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) ∧ 𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘)))
4746sumeq2dv 14720 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘𝑘)))
4834, 39, 473eqtr4d 2809 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
4948sumeq2dv 14720 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
50 fvoveq1 6865 . . . . . . . 8 (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚)))
5150oveq2d 6858 . . . . . . 7 (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
52 id 22 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
53 ssrab2 3847 . . . . . . . . . . . 12 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
54 simpr 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5553, 54sseldi 3759 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
5655, 26syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
57 dvdsdivcl 15325 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
584, 57sylan 575 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
5953, 58sseldi 3759 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
60 vmacl 25135 . . . . . . . . . . 11 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6159, 60syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
6256, 61remulcld 10324 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
6362recnd 10322 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6463anasss 458 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
6551, 52, 64dvdsflsumcom 25205 . . . . . 6 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ (1...(⌊‘(𝐴 / 𝑚)))((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
6649, 65eqtr4d 2802 . . . . 5 (𝐴 ∈ ℝ → Σ𝑚 ∈ (1...(⌊‘𝐴))((Λ‘𝑚) · (ψ‘(𝐴 / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6722, 66syl5eq 2811 . . . 4 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
6867oveq2d 6858 . . 3 (𝐴 ∈ ℝ → (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
69 fzfid 12980 . . . 4 (𝐴 ∈ ℝ → (1...(⌊‘𝐴)) ∈ Fin)
707, 10mulcld 10314 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
717, 15mulcld 10314 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛))) ∈ ℂ)
7269, 70, 71fsumadd 14757 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))))
73 fzfid 12980 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
74 dvdsssfz1 15327 . . . . . . . 8 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
754, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
76 ssfi 8387 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7773, 75, 76syl2anc 579 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7877, 62fsumrecl 14752 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
7978recnd 10322 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
8069, 70, 79fsumadd 14757 . . 3 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · (log‘𝑛)) + Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
8168, 72, 803eqtr4d 2809 . 2 (𝐴 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + ((Λ‘𝑛) · (ψ‘(𝐴 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
822, 17, 813eqtrd 2803 1 (𝐴 ∈ ℝ → (𝑆𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  {crab 3059  wss 3732   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  cr 10188  1c1 10190   + caddc 10192   · cmul 10194   / cdiv 10938  cn 11274  ...cfz 12533  cfl 12799  Σcsu 14703  cdvds 15267  logclog 24592  Λcvma 25109  ψcchp 25110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-sin 15084  df-cos 15085  df-pi 15087  df-dvds 15268  df-gcd 15500  df-prm 15668  df-pc 15823  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-vma 25115  df-chp 25116
This theorem is referenced by:  pntrlog2bndlem1  25557  pntrlog2bndlem4  25560
  Copyright terms: Public domain W3C validator