MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Structured version   Visualization version   GIF version

Theorem selberg 27592
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that Σ𝑛𝑥, Λ(𝑛)log𝑛 + Σ𝑚 · 𝑛𝑥, Λ(𝑚)Λ(𝑛) = 2𝑥log𝑥 + 𝑂(𝑥). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg
Dummy variables 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . . . . . . . . 13 (𝑛 = 𝑑 → (Λ‘𝑛) = (Λ‘𝑑))
2 oveq2 7439 . . . . . . . . . . . . . 14 (𝑛 = 𝑑 → (𝑥 / 𝑛) = (𝑥 / 𝑑))
32fveq2d 6910 . . . . . . . . . . . . 13 (𝑛 = 𝑑 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑑)))
41, 3oveq12d 7449 . . . . . . . . . . . 12 (𝑛 = 𝑑 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))
54cbvsumv 15732 . . . . . . . . . . 11 Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))
6 fzfid 14014 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
7 elfznn 13593 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
87adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
9 vmacl 27161 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℝ)
1110recnd 11289 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℂ)
12 elfznn 13593 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
1312adantl 481 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
14 vmacl 27161 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘𝑚) ∈ ℝ)
1615recnd 11289 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘𝑚) ∈ ℂ)
176, 11, 16fsummulc2 15820 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚)))
187nnrpd 13075 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
19 rpdivcl 13060 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
2018, 19sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
2120rpred 13077 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
22 chpval 27165 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚))
2321, 22syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚))
2423oveq2d 7447 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)))
2513nncnd 12282 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
267ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ)
2726nncnd 12282 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
2826nnne0d 12316 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
2925, 27, 28divcan3d 12048 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
3029fveq2d 6910 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘((𝑑 · 𝑚) / 𝑑)) = (Λ‘𝑚))
3130oveq2d 7447 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))) = ((Λ‘𝑑) · (Λ‘𝑚)))
3231sumeq2dv 15738 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚)))
3317, 24, 323eqtr4d 2787 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
3433sumeq2dv 15738 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
355, 34eqtrid 2789 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
36 fvoveq1 7454 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → (Λ‘(𝑛 / 𝑑)) = (Λ‘((𝑑 · 𝑚) / 𝑑)))
3736oveq2d 7447 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
38 rpre 13043 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
39 ssrab2 4080 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
40 simprr 773 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4139, 40sselid 3981 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
4241anassrs 467 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑑 ∈ ℕ)
4342, 9syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑑) ∈ ℝ)
44 elfznn 13593 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
46 dvdsdivcl 16353 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4745, 46sylan 580 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4839, 47sselid 3981 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ ℕ)
49 vmacl 27161 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑑) ∈ ℕ → (Λ‘(𝑛 / 𝑑)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑑)) ∈ ℝ)
5143, 50remulcld 11291 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ)
5251recnd 11289 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
5352anasss 466 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
5437, 38, 53dvdsflsumcom 27231 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
5535, 54eqtr4d 2780 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))))
5655oveq1d 7446 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
57 fzfid 14014 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
58 vmacl 27161 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
5945, 58syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
6059recnd 11289 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6144nnrpd 13075 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
62 rpdivcl 13060 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
6361, 62sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
6463rpred 13077 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
65 chpcl 27167 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
6664, 65syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
6766recnd 11289 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
6860, 67mulcld 11281 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
6945nnrpd 13075 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
70 relogcl 26617 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
7169, 70syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
7271recnd 11289 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
7360, 72mulcld 11281 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
7457, 68, 73fsumadd 15776 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
75 fzfid 14014 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin)
76 dvdsssfz1 16355 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7745, 76syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7875, 77ssfid 9301 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7978, 51fsumrecl 15770 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ)
8079recnd 11289 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
8157, 80, 73fsumadd 15776 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
8256, 74, 813eqtr4d 2787 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
8372, 67addcomd 11463 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛)))
8483oveq2d 7447 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))))
8560, 67, 72adddid 11285 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
8684, 85eqtrd 2777 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
8786sumeq2dv 15738 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
88 logsqvma2 27587 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
8945, 88syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
9089sumeq2dv 15738 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
9182, 87, 903eqtr4d 2787 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)))
92 fvoveq1 7454 . . . . . . . . 9 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
9392oveq1d 7446 . . . . . . . 8 (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2))
9493oveq2d 7447 . . . . . . 7 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
95 mucl 27184 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
9641, 95syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
9796zcnd 12723 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
9861ad2antrl 728 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑛 ∈ ℝ+)
9941nnrpd 13075 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℝ+)
10098, 99rpdivcld 13094 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
101 relogcl 26617 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ)
102101recnd 11289 . . . . . . . . . 10 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ)
103100, 102syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
104103sqcld 14184 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ)
10597, 104mulcld 11281 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ)
10694, 38, 105dvdsflsumcom 27231 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
10729fveq2d 6910 . . . . . . . . . 10 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
108107oveq1d 7446 . . . . . . . . 9 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2))
109108oveq2d 7447 . . . . . . . 8 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2)))
110109sumeq2dv 15738 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
111110sumeq2dv 15738 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
11291, 106, 1113eqtrd 2781 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
113112oveq1d 7446 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥))
114113oveq1d 7446 . . 3 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
115114mpteq2ia 5245 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
116 eqid 2737 . . 3 ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑)
117116selberglem2 27590 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
118115, 117eqeltri 2837 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {crab 3436  wss 3951   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  cz 12613  +crp 13034  ...cfz 13547  cfl 13830  cexp 14102  𝑂(1)co1 15522  Σcsu 15722  cdvds 16290  logclog 26596  Λcvma 27135  ψcchp 27136  μcmu 27138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-lo1 15527  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-cxp 26599  df-atan 26910  df-em 27036  df-vma 27141  df-chp 27142  df-mu 27144
This theorem is referenced by:  selbergb  27593  selberg2  27595  selbergs  27618
  Copyright terms: Public domain W3C validator