MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Structured version   Visualization version   GIF version

Theorem selberg 27487
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that Σ𝑛𝑥, Λ(𝑛)log𝑛 + Σ𝑚 · 𝑛𝑥, Λ(𝑚)Λ(𝑛) = 2𝑥log𝑥 + 𝑂(𝑥). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg
Dummy variables 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . . . . . . . . . . 13 (𝑛 = 𝑑 → (Λ‘𝑛) = (Λ‘𝑑))
2 oveq2 7360 . . . . . . . . . . . . . 14 (𝑛 = 𝑑 → (𝑥 / 𝑛) = (𝑥 / 𝑑))
32fveq2d 6832 . . . . . . . . . . . . 13 (𝑛 = 𝑑 → (ψ‘(𝑥 / 𝑛)) = (ψ‘(𝑥 / 𝑑)))
41, 3oveq12d 7370 . . . . . . . . . . . 12 (𝑛 = 𝑑 → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))))
54cbvsumv 15605 . . . . . . . . . . 11 Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))
6 fzfid 13882 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
7 elfznn 13455 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
87adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
9 vmacl 27056 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℝ)
1110recnd 11147 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℂ)
12 elfznn 13455 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
1312adantl 481 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
14 vmacl 27056 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘𝑚) ∈ ℝ)
1615recnd 11147 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘𝑚) ∈ ℂ)
176, 11, 16fsummulc2 15693 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚)))
187nnrpd 12934 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
19 rpdivcl 12919 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
2018, 19sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
2120rpred 12936 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
22 chpval 27060 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚))
2321, 22syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚))
2423oveq2d 7368 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(Λ‘𝑚)))
2513nncnd 12148 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
267ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℕ)
2726nncnd 12148 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
2826nnne0d 12182 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
2925, 27, 28divcan3d 11909 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑑 · 𝑚) / 𝑑) = 𝑚)
3029fveq2d 6832 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (Λ‘((𝑑 · 𝑚) / 𝑑)) = (Λ‘𝑚))
3130oveq2d 7368 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))) = ((Λ‘𝑑) · (Λ‘𝑚)))
3231sumeq2dv 15611 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘𝑚)))
3317, 24, 323eqtr4d 2778 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
3433sumeq2dv 15611 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
355, 34eqtrid 2780 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
36 fvoveq1 7375 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → (Λ‘(𝑛 / 𝑑)) = (Λ‘((𝑑 · 𝑚) / 𝑑)))
3736oveq2d 7368 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = ((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
38 rpre 12901 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
39 ssrab2 4029 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
40 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4139, 40sselid 3928 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
4241anassrs 467 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑑 ∈ ℕ)
4342, 9syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑑) ∈ ℝ)
44 elfznn 13455 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4544adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
46 dvdsdivcl 16229 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4745, 46sylan 580 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4839, 47sselid 3928 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑑) ∈ ℕ)
49 vmacl 27056 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑑) ∈ ℕ → (Λ‘(𝑛 / 𝑑)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑑)) ∈ ℝ)
5143, 50remulcld 11149 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ)
5251recnd 11147 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
5352anasss 466 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
5437, 38, 53dvdsflsumcom 27126 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((Λ‘𝑑) · (Λ‘((𝑑 · 𝑚) / 𝑑))))
5535, 54eqtr4d 2771 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))))
5655oveq1d 7367 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
57 fzfid 13882 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
58 vmacl 27056 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
5945, 58syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
6059recnd 11147 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
6144nnrpd 12934 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
62 rpdivcl 12919 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
6361, 62sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
6463rpred 12936 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
65 chpcl 27062 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
6664, 65syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
6766recnd 11147 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℂ)
6860, 67mulcld 11139 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℂ)
6945nnrpd 12934 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
70 relogcl 26512 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ → (log‘𝑛) ∈ ℝ)
7169, 70syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
7271recnd 11147 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
7360, 72mulcld 11139 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
7457, 68, 73fsumadd 15649 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
75 fzfid 13882 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin)
76 dvdsssfz1 16231 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7745, 76syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
7875, 77ssfid 9160 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
7978, 51fsumrecl 15643 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℝ)
8079recnd 11147 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) ∈ ℂ)
8157, 80, 73fsumadd 15649 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛))))
8256, 74, 813eqtr4d 2778 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
8372, 67addcomd 11322 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) = ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛)))
8483oveq2d 7368 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))))
8560, 67, 72adddid 11143 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((ψ‘(𝑥 / 𝑛)) + (log‘𝑛))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
8684, 85eqtrd 2768 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = (((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
8786sumeq2dv 15611 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) + ((Λ‘𝑛) · (log‘𝑛))))
88 logsqvma2 27482 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
8945, 88syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
9089sumeq2dv 15611 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑑) · (Λ‘(𝑛 / 𝑑))) + ((Λ‘𝑛) · (log‘𝑛))))
9182, 87, 903eqtr4d 2778 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)))
92 fvoveq1 7375 . . . . . . . . 9 (𝑛 = (𝑑 · 𝑚) → (log‘(𝑛 / 𝑑)) = (log‘((𝑑 · 𝑚) / 𝑑)))
9392oveq1d 7367 . . . . . . . 8 (𝑛 = (𝑑 · 𝑚) → ((log‘(𝑛 / 𝑑))↑2) = ((log‘((𝑑 · 𝑚) / 𝑑))↑2))
9493oveq2d 7368 . . . . . . 7 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
95 mucl 27079 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
9641, 95syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
9796zcnd 12584 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
9861ad2antrl 728 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑛 ∈ ℝ+)
9941nnrpd 12934 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℝ+)
10098, 99rpdivcld 12953 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (𝑛 / 𝑑) ∈ ℝ+)
101 relogcl 26512 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℝ)
102101recnd 11147 . . . . . . . . . 10 ((𝑛 / 𝑑) ∈ ℝ+ → (log‘(𝑛 / 𝑑)) ∈ ℂ)
103100, 102syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (log‘(𝑛 / 𝑑)) ∈ ℂ)
104103sqcld 14053 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((log‘(𝑛 / 𝑑))↑2) ∈ ℂ)
10597, 104mulcld 11139 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) ∈ ℂ)
10694, 38, 105dvdsflsumcom 27126 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)))
10729fveq2d 6832 . . . . . . . . . 10 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘((𝑑 · 𝑚) / 𝑑)) = (log‘𝑚))
108107oveq1d 7367 . . . . . . . . 9 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘((𝑑 · 𝑚) / 𝑑))↑2) = ((log‘𝑚)↑2))
109108oveq2d 7368 . . . . . . . 8 (((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = ((μ‘𝑑) · ((log‘𝑚)↑2)))
110109sumeq2dv 15611 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
111110sumeq2dv 15611 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘((𝑑 · 𝑚) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
11291, 106, 1113eqtrd 2772 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)))
113112oveq1d 7367 . . . 4 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) = (Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥))
114113oveq1d 7367 . . 3 (𝑥 ∈ ℝ+ → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
115114mpteq2ia 5188 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
116 eqid 2733 . . 3 ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑) = ((((log‘(𝑥 / 𝑑))↑2) + (2 − (2 · (log‘(𝑥 / 𝑑))))) / 𝑑)
117116selberglem2 27485 . 2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
118115, 117eqeltri 2829 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  {crab 3396  wss 3898   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  cz 12475  +crp 12892  ...cfz 13409  cfl 13696  cexp 13970  𝑂(1)co1 15395  Σcsu 15595  cdvds 16165  logclog 26491  Λcvma 27030  ψcchp 27031  μcmu 27033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-o1 15399  df-lo1 15400  df-sum 15596  df-ef 15976  df-e 15977  df-sin 15978  df-cos 15979  df-tan 15980  df-pi 15981  df-dvds 16166  df-gcd 16408  df-prm 16585  df-pc 16751  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-ulm 26314  df-log 26493  df-cxp 26494  df-atan 26805  df-em 26931  df-vma 27036  df-chp 27037  df-mu 27039
This theorem is referenced by:  selbergb  27488  selberg2  27490  selbergs  27513
  Copyright terms: Public domain W3C validator