MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Structured version   Visualization version   GIF version

Theorem selberg 27040
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that Σ𝑛 ≀ π‘₯, Ξ›(𝑛)log𝑛 + Ξ£π‘š Β· 𝑛 ≀ π‘₯, Ξ›(π‘š)Ξ›(𝑛) = 2π‘₯logπ‘₯ + 𝑂(π‘₯). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg (π‘₯ ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯)))) ∈ 𝑂(1)
Distinct variable group:   π‘₯,𝑛

Proof of Theorem selberg
Dummy variables 𝑑 π‘š 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . . . . . . . . . 13 (𝑛 = 𝑑 β†’ (Ξ›β€˜π‘›) = (Ξ›β€˜π‘‘))
2 oveq2 7413 . . . . . . . . . . . . . 14 (𝑛 = 𝑑 β†’ (π‘₯ / 𝑛) = (π‘₯ / 𝑑))
32fveq2d 6892 . . . . . . . . . . . . 13 (𝑛 = 𝑑 β†’ (Οˆβ€˜(π‘₯ / 𝑛)) = (Οˆβ€˜(π‘₯ / 𝑑)))
41, 3oveq12d 7423 . . . . . . . . . . . 12 (𝑛 = 𝑑 β†’ ((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) = ((Ξ›β€˜π‘‘) Β· (Οˆβ€˜(π‘₯ / 𝑑))))
54cbvsumv 15638 . . . . . . . . . . 11 Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘‘) Β· (Οˆβ€˜(π‘₯ / 𝑑)))
6 fzfid 13934 . . . . . . . . . . . . . 14 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1...(βŒŠβ€˜(π‘₯ / 𝑑))) ∈ Fin)
7 elfznn 13526 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„•)
87adantl 482 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„•)
9 vmacl 26611 . . . . . . . . . . . . . . . 16 (𝑑 ∈ β„• β†’ (Ξ›β€˜π‘‘) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ›β€˜π‘‘) ∈ ℝ)
1110recnd 11238 . . . . . . . . . . . . . 14 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ›β€˜π‘‘) ∈ β„‚)
12 elfznn 13526 . . . . . . . . . . . . . . . . 17 (π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑))) β†’ π‘š ∈ β„•)
1312adantl 482 . . . . . . . . . . . . . . . 16 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ π‘š ∈ β„•)
14 vmacl 26611 . . . . . . . . . . . . . . . 16 (π‘š ∈ β„• β†’ (Ξ›β€˜π‘š) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ (Ξ›β€˜π‘š) ∈ ℝ)
1615recnd 11238 . . . . . . . . . . . . . 14 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ (Ξ›β€˜π‘š) ∈ β„‚)
176, 11, 16fsummulc2 15726 . . . . . . . . . . . . 13 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘‘) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))(Ξ›β€˜π‘š)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜π‘š)))
187nnrpd 13010 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ ℝ+)
19 rpdivcl 12995 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ ℝ+) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
2018, 19sylan2 593 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
2120rpred 13012 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑑) ∈ ℝ)
22 chpval 26615 . . . . . . . . . . . . . . 15 ((π‘₯ / 𝑑) ∈ ℝ β†’ (Οˆβ€˜(π‘₯ / 𝑑)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))(Ξ›β€˜π‘š))
2321, 22syl 17 . . . . . . . . . . . . . 14 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Οˆβ€˜(π‘₯ / 𝑑)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))(Ξ›β€˜π‘š))
2423oveq2d 7421 . . . . . . . . . . . . 13 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘‘) Β· (Οˆβ€˜(π‘₯ / 𝑑))) = ((Ξ›β€˜π‘‘) Β· Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))(Ξ›β€˜π‘š)))
2513nncnd 12224 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ π‘š ∈ β„‚)
267ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ 𝑑 ∈ β„•)
2726nncnd 12224 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ 𝑑 ∈ β„‚)
2826nnne0d 12258 . . . . . . . . . . . . . . . . 17 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ 𝑑 β‰  0)
2925, 27, 28divcan3d 11991 . . . . . . . . . . . . . . . 16 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((𝑑 Β· π‘š) / 𝑑) = π‘š)
3029fveq2d 6892 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑)) = (Ξ›β€˜π‘š))
3130oveq2d 7421 . . . . . . . . . . . . . 14 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))) = ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜π‘š)))
3231sumeq2dv 15645 . . . . . . . . . . . . 13 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜π‘š)))
3317, 24, 323eqtr4d 2782 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘‘) Β· (Οˆβ€˜(π‘₯ / 𝑑))) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))))
3433sumeq2dv 15645 . . . . . . . . . . 11 (π‘₯ ∈ ℝ+ β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘‘) Β· (Οˆβ€˜(π‘₯ / 𝑑))) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))))
355, 34eqtrid 2784 . . . . . . . . . 10 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))))
36 fvoveq1 7428 . . . . . . . . . . . 12 (𝑛 = (𝑑 Β· π‘š) β†’ (Ξ›β€˜(𝑛 / 𝑑)) = (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑)))
3736oveq2d 7421 . . . . . . . . . . 11 (𝑛 = (𝑑 Β· π‘š) β†’ ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) = ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))))
38 rpre 12978 . . . . . . . . . . 11 (π‘₯ ∈ ℝ+ β†’ π‘₯ ∈ ℝ)
39 ssrab2 4076 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} βŠ† β„•
40 simprr 771 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})
4139, 40sselid 3979 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ 𝑑 ∈ β„•)
4241anassrs 468 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ 𝑑 ∈ β„•)
4342, 9syl 17 . . . . . . . . . . . . . 14 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ (Ξ›β€˜π‘‘) ∈ ℝ)
44 elfznn 13526 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ β„•)
4544adantl 482 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„•)
46 dvdsdivcl 16255 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ β„• ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ (𝑛 / 𝑑) ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})
4745, 46sylan 580 . . . . . . . . . . . . . . . 16 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ (𝑛 / 𝑑) ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})
4839, 47sselid 3979 . . . . . . . . . . . . . . 15 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ (𝑛 / 𝑑) ∈ β„•)
49 vmacl 26611 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑑) ∈ β„• β†’ (Ξ›β€˜(𝑛 / 𝑑)) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . . 14 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ (Ξ›β€˜(𝑛 / 𝑑)) ∈ ℝ)
5143, 50remulcld 11240 . . . . . . . . . . . . 13 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) ∈ ℝ)
5251recnd 11238 . . . . . . . . . . . 12 (((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛}) β†’ ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) ∈ β„‚)
5352anasss 467 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) ∈ β„‚)
5437, 38, 53dvdsflsumcom 26681 . . . . . . . . . 10 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((Ξ›β€˜π‘‘) Β· (Ξ›β€˜((𝑑 Β· π‘š) / 𝑑))))
5535, 54eqtr4d 2775 . . . . . . . . 9 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))))
5655oveq1d 7420 . . . . . . . 8 (π‘₯ ∈ ℝ+ β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
57 fzfid 13934 . . . . . . . . 9 (π‘₯ ∈ ℝ+ β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
58 vmacl 26611 . . . . . . . . . . . 12 (𝑛 ∈ β„• β†’ (Ξ›β€˜π‘›) ∈ ℝ)
5945, 58syl 17 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ›β€˜π‘›) ∈ ℝ)
6059recnd 11238 . . . . . . . . . 10 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Ξ›β€˜π‘›) ∈ β„‚)
6144nnrpd 13010 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ ℝ+)
62 rpdivcl 12995 . . . . . . . . . . . . . 14 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ ℝ+) β†’ (π‘₯ / 𝑛) ∈ ℝ+)
6361, 62sylan2 593 . . . . . . . . . . . . 13 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑛) ∈ ℝ+)
6463rpred 13012 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑛) ∈ ℝ)
65 chpcl 26617 . . . . . . . . . . . 12 ((π‘₯ / 𝑛) ∈ ℝ β†’ (Οˆβ€˜(π‘₯ / 𝑛)) ∈ ℝ)
6664, 65syl 17 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Οˆβ€˜(π‘₯ / 𝑛)) ∈ ℝ)
6766recnd 11238 . . . . . . . . . 10 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (Οˆβ€˜(π‘₯ / 𝑛)) ∈ β„‚)
6860, 67mulcld 11230 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) ∈ β„‚)
6945nnrpd 13010 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ ℝ+)
70 relogcl 26075 . . . . . . . . . . . 12 (𝑛 ∈ ℝ+ β†’ (logβ€˜π‘›) ∈ ℝ)
7169, 70syl 17 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (logβ€˜π‘›) ∈ ℝ)
7271recnd 11238 . . . . . . . . . 10 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (logβ€˜π‘›) ∈ β„‚)
7360, 72mulcld 11230 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›)) ∈ β„‚)
7457, 68, 73fsumadd 15682 . . . . . . . 8 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
75 fzfid 13934 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1...𝑛) ∈ Fin)
76 dvdsssfz1 16257 . . . . . . . . . . . . 13 (𝑛 ∈ β„• β†’ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} βŠ† (1...𝑛))
7745, 76syl 17 . . . . . . . . . . . 12 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} βŠ† (1...𝑛))
7875, 77ssfid 9263 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ∈ Fin)
7978, 51fsumrecl 15676 . . . . . . . . . 10 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) ∈ ℝ)
8079recnd 11238 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) ∈ β„‚)
8157, 80, 73fsumadd 15682 . . . . . . . 8 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
8256, 74, 813eqtr4d 2782 . . . . . . 7 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
8372, 67addcomd 11412 . . . . . . . . . 10 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛))) = ((Οˆβ€˜(π‘₯ / 𝑛)) + (logβ€˜π‘›)))
8483oveq2d 7421 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) = ((Ξ›β€˜π‘›) Β· ((Οˆβ€˜(π‘₯ / 𝑛)) + (logβ€˜π‘›))))
8560, 67, 72adddid 11234 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) Β· ((Οˆβ€˜(π‘₯ / 𝑛)) + (logβ€˜π‘›))) = (((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
8684, 85eqtrd 2772 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) = (((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
8786sumeq2dv 15645 . . . . . . 7 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(((Ξ›β€˜π‘›) Β· (Οˆβ€˜(π‘₯ / 𝑛))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
88 logsqvma2 27035 . . . . . . . . 9 (𝑛 ∈ β„• β†’ Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
8945, 88syl 17 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
9089sumeq2dv 15645 . . . . . . 7 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))(Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((Ξ›β€˜π‘‘) Β· (Ξ›β€˜(𝑛 / 𝑑))) + ((Ξ›β€˜π‘›) Β· (logβ€˜π‘›))))
9182, 87, 903eqtr4d 2782 . . . . . 6 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)))
92 fvoveq1 7428 . . . . . . . . 9 (𝑛 = (𝑑 Β· π‘š) β†’ (logβ€˜(𝑛 / 𝑑)) = (logβ€˜((𝑑 Β· π‘š) / 𝑑)))
9392oveq1d 7420 . . . . . . . 8 (𝑛 = (𝑑 Β· π‘š) β†’ ((logβ€˜(𝑛 / 𝑑))↑2) = ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2))
9493oveq2d 7421 . . . . . . 7 (𝑛 = (𝑑 Β· π‘š) β†’ ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)) = ((ΞΌβ€˜π‘‘) Β· ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2)))
95 mucl 26634 . . . . . . . . . 10 (𝑑 ∈ β„• β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
9641, 95syl 17 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
9796zcnd 12663 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ (ΞΌβ€˜π‘‘) ∈ β„‚)
9861ad2antrl 726 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ 𝑛 ∈ ℝ+)
9941nnrpd 13010 . . . . . . . . . . 11 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ 𝑑 ∈ ℝ+)
10098, 99rpdivcld 13029 . . . . . . . . . 10 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ (𝑛 / 𝑑) ∈ ℝ+)
101 relogcl 26075 . . . . . . . . . . 11 ((𝑛 / 𝑑) ∈ ℝ+ β†’ (logβ€˜(𝑛 / 𝑑)) ∈ ℝ)
102101recnd 11238 . . . . . . . . . 10 ((𝑛 / 𝑑) ∈ ℝ+ β†’ (logβ€˜(𝑛 / 𝑑)) ∈ β„‚)
103100, 102syl 17 . . . . . . . . 9 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ (logβ€˜(𝑛 / 𝑑)) ∈ β„‚)
104103sqcld 14105 . . . . . . . 8 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ ((logβ€˜(𝑛 / 𝑑))↑2) ∈ β„‚)
10597, 104mulcld 11230 . . . . . . 7 ((π‘₯ ∈ ℝ+ ∧ (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) ∧ 𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛})) β†’ ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)) ∈ β„‚)
10694, 38, 105dvdsflsumcom 26681 . . . . . 6 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))Σ𝑑 ∈ {𝑦 ∈ β„• ∣ 𝑦 βˆ₯ 𝑛} ((ΞΌβ€˜π‘‘) Β· ((logβ€˜(𝑛 / 𝑑))↑2)) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2)))
10729fveq2d 6892 . . . . . . . . . 10 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ (logβ€˜((𝑑 Β· π‘š) / 𝑑)) = (logβ€˜π‘š))
108107oveq1d 7420 . . . . . . . . 9 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2) = ((logβ€˜π‘š)↑2))
109108oveq2d 7421 . . . . . . . 8 (((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((ΞΌβ€˜π‘‘) Β· ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2)) = ((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)))
110109sumeq2dv 15645 . . . . . . 7 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2)) = Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)))
111110sumeq2dv 15645 . . . . . 6 (π‘₯ ∈ ℝ+ β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜((𝑑 Β· π‘š) / 𝑑))↑2)) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)))
11291, 106, 1113eqtrd 2776 . . . . 5 (π‘₯ ∈ ℝ+ β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)))
113112oveq1d 7420 . . . 4 (π‘₯ ∈ ℝ+ β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) / π‘₯) = (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)) / π‘₯))
114113oveq1d 7420 . . 3 (π‘₯ ∈ ℝ+ β†’ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯))) = ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯))))
115114mpteq2ia 5250 . 2 (π‘₯ ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯)))) = (π‘₯ ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯))))
116 eqid 2732 . . 3 ((((logβ€˜(π‘₯ / 𝑑))↑2) + (2 βˆ’ (2 Β· (logβ€˜(π‘₯ / 𝑑))))) / 𝑑) = ((((logβ€˜(π‘₯ / 𝑑))↑2) + (2 βˆ’ (2 Β· (logβ€˜(π‘₯ / 𝑑))))) / 𝑑)
117116selberglem2 27038 . 2 (π‘₯ ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))Ξ£π‘š ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((ΞΌβ€˜π‘‘) Β· ((logβ€˜π‘š)↑2)) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯)))) ∈ 𝑂(1)
118115, 117eqeltri 2829 1 (π‘₯ ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((Ξ›β€˜π‘›) Β· ((logβ€˜π‘›) + (Οˆβ€˜(π‘₯ / 𝑛)))) / π‘₯) βˆ’ (2 Β· (logβ€˜π‘₯)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3947   class class class wbr 5147   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  1c1 11107   + caddc 11109   Β· cmul 11111   βˆ’ cmin 11440   / cdiv 11867  β„•cn 12208  2c2 12263  β„€cz 12554  β„+crp 12970  ...cfz 13480  βŒŠcfl 13751  β†‘cexp 14023  π‘‚(1)co1 15426  Ξ£csu 15628   βˆ₯ cdvds 16193  logclog 26054  Ξ›cvma 26585  Οˆcchp 26586  ΞΌcmu 26588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-o1 15430  df-lo1 15431  df-sum 15629  df-ef 16007  df-e 16008  df-sin 16009  df-cos 16010  df-tan 16011  df-pi 16012  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-cmp 22882  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-limc 25374  df-dv 25375  df-ulm 25880  df-log 26056  df-cxp 26057  df-atan 26361  df-em 26486  df-vma 26591  df-chp 26592  df-mu 26594
This theorem is referenced by:  selbergb  27041  selberg2  27043  selbergs  27066
  Copyright terms: Public domain W3C validator