![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chtfl | Structured version Visualization version GIF version |
Description: The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
chtfl | β’ (π΄ β β β (ΞΈβ(ββπ΄)) = (ΞΈβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flidm 13806 | . . . . . 6 β’ (π΄ β β β (ββ(ββπ΄)) = (ββπ΄)) | |
2 | 1 | oveq2d 7436 | . . . . 5 β’ (π΄ β β β (2...(ββ(ββπ΄))) = (2...(ββπ΄))) |
3 | 2 | ineq1d 4211 | . . . 4 β’ (π΄ β β β ((2...(ββ(ββπ΄))) β© β) = ((2...(ββπ΄)) β© β)) |
4 | reflcl 13793 | . . . . 5 β’ (π΄ β β β (ββπ΄) β β) | |
5 | ppisval 27035 | . . . . 5 β’ ((ββπ΄) β β β ((0[,](ββπ΄)) β© β) = ((2...(ββ(ββπ΄))) β© β)) | |
6 | 4, 5 | syl 17 | . . . 4 β’ (π΄ β β β ((0[,](ββπ΄)) β© β) = ((2...(ββ(ββπ΄))) β© β)) |
7 | ppisval 27035 | . . . 4 β’ (π΄ β β β ((0[,]π΄) β© β) = ((2...(ββπ΄)) β© β)) | |
8 | 3, 6, 7 | 3eqtr4d 2778 | . . 3 β’ (π΄ β β β ((0[,](ββπ΄)) β© β) = ((0[,]π΄) β© β)) |
9 | 8 | sumeq1d 15679 | . 2 β’ (π΄ β β β Ξ£π β ((0[,](ββπ΄)) β© β)(logβπ) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) |
10 | chtval 27041 | . . 3 β’ ((ββπ΄) β β β (ΞΈβ(ββπ΄)) = Ξ£π β ((0[,](ββπ΄)) β© β)(logβπ)) | |
11 | 4, 10 | syl 17 | . 2 β’ (π΄ β β β (ΞΈβ(ββπ΄)) = Ξ£π β ((0[,](ββπ΄)) β© β)(logβπ)) |
12 | chtval 27041 | . 2 β’ (π΄ β β β (ΞΈβπ΄) = Ξ£π β ((0[,]π΄) β© β)(logβπ)) | |
13 | 9, 11, 12 | 3eqtr4d 2778 | 1 β’ (π΄ β β β (ΞΈβ(ββπ΄)) = (ΞΈβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β© cin 3946 βcfv 6548 (class class class)co 7420 βcr 11137 0cc0 11138 2c2 12297 [,]cicc 13359 ...cfz 13516 βcfl 13787 Ξ£csu 15664 βcprime 16641 logclog 26487 ΞΈccht 27022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-icc 13363 df-fz 13517 df-fl 13789 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-sum 15665 df-dvds 16231 df-prm 16642 df-cht 27028 |
This theorem is referenced by: efchtdvds 27090 chtub 27144 |
Copyright terms: Public domain | W3C validator |