| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcic | Structured version Visualization version GIF version | ||
| Description: The set of isomorphic objects is a relation. Simplifies cicer 17744 (see cicerALT 49008). (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| relcic | ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 5778 | . . . . 5 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ Cat → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 3 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘〈𝑥, 𝑦〉)) | |
| 4 | 3 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)) |
| 5 | 4 | rabxp 5679 | . . . . . 6 ⊢ {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 7 | 6 | releqd 5733 | . . . 4 ⊢ (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)})) |
| 8 | 2, 7 | mpbird 257 | . . 3 ⊢ (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 9 | isofn 17713 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 10 | fvex 6853 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
| 11 | sqxpexg 7711 | . . . . . 6 ⊢ ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
| 13 | 0ex 5257 | . . . . . 6 ⊢ ∅ ∈ V | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
| 15 | suppvalfn 8124 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) | |
| 16 | 9, 12, 14, 15 | syl3anc 1373 | . . . 4 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 17 | 16 | releqd 5733 | . . 3 ⊢ (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})) |
| 18 | 8, 17 | mpbird 257 | . 2 ⊢ (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅)) |
| 19 | cicfval 17735 | . . 3 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 20 | 19 | releqd 5733 | . 2 ⊢ (𝐶 ∈ Cat → (Rel ( ≃𝑐 ‘𝐶) ↔ Rel ((Iso‘𝐶) supp ∅))) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ∅c0 4292 〈cop 4591 {copab 5164 × cxp 5629 Rel wrel 5636 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 Basecbs 17155 Catccat 17601 Isociso 17684 ≃𝑐 ccic 17733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-supp 8117 df-inv 17686 df-iso 17687 df-cic 17734 |
| This theorem is referenced by: cicerALT 49008 cic1st2nd 49009 |
| Copyright terms: Public domain | W3C validator |