| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcic | Structured version Visualization version GIF version | ||
| Description: The set of isomorphic objects is a relation. Simplifies cicer 17822 (see cicerALT 48920). (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| relcic | ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 5814 | . . . . 5 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ Cat → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 3 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘〈𝑥, 𝑦〉)) | |
| 4 | 3 | neeq1d 2990 | . . . . . . 7 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)) |
| 5 | 4 | rabxp 5713 | . . . . . 6 ⊢ {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 7 | 6 | releqd 5768 | . . . 4 ⊢ (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)})) |
| 8 | 2, 7 | mpbird 257 | . . 3 ⊢ (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 9 | isofn 17791 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 10 | fvex 6899 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
| 11 | sqxpexg 7757 | . . . . . 6 ⊢ ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
| 13 | 0ex 5287 | . . . . . 6 ⊢ ∅ ∈ V | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
| 15 | suppvalfn 8175 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) | |
| 16 | 9, 12, 14, 15 | syl3anc 1372 | . . . 4 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 17 | 16 | releqd 5768 | . . 3 ⊢ (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})) |
| 18 | 8, 17 | mpbird 257 | . 2 ⊢ (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅)) |
| 19 | cicfval 17813 | . . 3 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 20 | 19 | releqd 5768 | . 2 ⊢ (𝐶 ∈ Cat → (Rel ( ≃𝑐 ‘𝐶) ↔ Rel ((Iso‘𝐶) supp ∅))) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {crab 3419 Vcvv 3463 ∅c0 4313 〈cop 4612 {copab 5185 × cxp 5663 Rel wrel 5670 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 supp csupp 8167 Basecbs 17230 Catccat 17679 Isociso 17762 ≃𝑐 ccic 17811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-supp 8168 df-inv 17764 df-iso 17765 df-cic 17812 |
| This theorem is referenced by: cicerALT 48920 cic1st2nd 48921 |
| Copyright terms: Public domain | W3C validator |