Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcic Structured version   Visualization version   GIF version

Theorem relcic 48919
Description: The set of isomorphic objects is a relation. Simplifies cicer 17822 (see cicerALT 48920). (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
relcic (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))

Proof of Theorem relcic
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5814 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
21a1i 11 . . . 4 (𝐶 ∈ Cat → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
3 fveq2 6886 . . . . . . . 8 (𝑓 = ⟨𝑥, 𝑦⟩ → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩))
43neeq1d 2990 . . . . . . 7 (𝑓 = ⟨𝑥, 𝑦⟩ → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅))
54rabxp 5713 . . . . . 6 {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
65a1i 11 . . . . 5 (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
76releqd 5768 . . . 4 (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}))
82, 7mpbird 257 . . 3 (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
9 isofn 17791 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fvex 6899 . . . . . 6 (Base‘𝐶) ∈ V
11 sqxpexg 7757 . . . . . 6 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
1210, 11mp1i 13 . . . . 5 (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
13 0ex 5287 . . . . . 6 ∅ ∈ V
1413a1i 11 . . . . 5 (𝐶 ∈ Cat → ∅ ∈ V)
15 suppvalfn 8175 . . . . 5 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
169, 12, 14, 15syl3anc 1372 . . . 4 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
1716releqd 5768 . . 3 (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}))
188, 17mpbird 257 . 2 (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅))
19 cicfval 17813 . . 3 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
2019releqd 5768 . 2 (𝐶 ∈ Cat → (Rel ( ≃𝑐𝐶) ↔ Rel ((Iso‘𝐶) supp ∅)))
2118, 20mpbird 257 1 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2931  {crab 3419  Vcvv 3463  c0 4313  cop 4612  {copab 5185   × cxp 5663  Rel wrel 5670   Fn wfn 6536  cfv 6541  (class class class)co 7413   supp csupp 8167  Basecbs 17230  Catccat 17679  Isociso 17762  𝑐 ccic 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-supp 8168  df-inv 17764  df-iso 17765  df-cic 17812
This theorem is referenced by:  cicerALT  48920  cic1st2nd  48921
  Copyright terms: Public domain W3C validator