| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcic | Structured version Visualization version GIF version | ||
| Description: The set of isomorphic objects is a relation. Simplifies cicer 17774 (see cicerALT 49023). (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| relcic | ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 5789 | . . . . 5 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ Cat → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 3 | fveq2 6860 | . . . . . . . 8 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘〈𝑥, 𝑦〉)) | |
| 4 | 3 | neeq1d 2985 | . . . . . . 7 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)) |
| 5 | 4 | rabxp 5688 | . . . . . 6 ⊢ {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 7 | 6 | releqd 5743 | . . . 4 ⊢ (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)})) |
| 8 | 2, 7 | mpbird 257 | . . 3 ⊢ (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 9 | isofn 17743 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 10 | fvex 6873 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
| 11 | sqxpexg 7733 | . . . . . 6 ⊢ ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
| 13 | 0ex 5264 | . . . . . 6 ⊢ ∅ ∈ V | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
| 15 | suppvalfn 8149 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) | |
| 16 | 9, 12, 14, 15 | syl3anc 1373 | . . . 4 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 17 | 16 | releqd 5743 | . . 3 ⊢ (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})) |
| 18 | 8, 17 | mpbird 257 | . 2 ⊢ (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅)) |
| 19 | cicfval 17765 | . . 3 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 20 | 19 | releqd 5743 | . 2 ⊢ (𝐶 ∈ Cat → (Rel ( ≃𝑐 ‘𝐶) ↔ Rel ((Iso‘𝐶) supp ∅))) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ∅c0 4298 〈cop 4597 {copab 5171 × cxp 5638 Rel wrel 5645 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 supp csupp 8141 Basecbs 17185 Catccat 17631 Isociso 17714 ≃𝑐 ccic 17763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-supp 8142 df-inv 17716 df-iso 17717 df-cic 17764 |
| This theorem is referenced by: cicerALT 49023 cic1st2nd 49024 |
| Copyright terms: Public domain | W3C validator |