| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcic | Structured version Visualization version GIF version | ||
| Description: The set of isomorphic objects is a relation. Simplifies cicer 17721 (see cicerALT 49207). (Contributed by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| relcic | ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 5770 | . . . . 5 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ Cat → Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 3 | fveq2 6831 | . . . . . . . 8 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘〈𝑥, 𝑦〉)) | |
| 4 | 3 | neeq1d 2988 | . . . . . . 7 ⊢ (𝑓 = 〈𝑥, 𝑦〉 → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)) |
| 5 | 4 | rabxp 5669 | . . . . . 6 ⊢ {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)} |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)}) |
| 7 | 6 | releqd 5725 | . . . 4 ⊢ (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘〈𝑥, 𝑦〉) ≠ ∅)})) |
| 8 | 2, 7 | mpbird 257 | . . 3 ⊢ (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 9 | isofn 17690 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 10 | fvex 6844 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
| 11 | sqxpexg 7697 | . . . . . 6 ⊢ ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
| 13 | 0ex 5249 | . . . . . 6 ⊢ ∅ ∈ V | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
| 15 | suppvalfn 8107 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) | |
| 16 | 9, 12, 14, 15 | syl3anc 1373 | . . . 4 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}) |
| 17 | 16 | releqd 5725 | . . 3 ⊢ (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})) |
| 18 | 8, 17 | mpbird 257 | . 2 ⊢ (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅)) |
| 19 | cicfval 17712 | . . 3 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 20 | 19 | releqd 5725 | . 2 ⊢ (𝐶 ∈ Cat → (Rel ( ≃𝑐 ‘𝐶) ↔ Rel ((Iso‘𝐶) supp ∅))) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ∅c0 4282 〈cop 4583 {copab 5157 × cxp 5619 Rel wrel 5626 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 Basecbs 17127 Catccat 17578 Isociso 17661 ≃𝑐 ccic 17710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-supp 8100 df-inv 17663 df-iso 17664 df-cic 17711 |
| This theorem is referenced by: cicerALT 49207 cic1st2nd 49208 |
| Copyright terms: Public domain | W3C validator |