| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cicerALT | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cicerALT | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic 49206 | . 2 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | |
| 2 | cicsym 17719 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦) → 𝑦( ≃𝑐 ‘𝐶)𝑥) | |
| 3 | cictr 17720 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧) → 𝑥( ≃𝑐 ‘𝐶)𝑧) | |
| 4 | 3 | 3expb 1120 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧)) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 5 | cicref 17716 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐 ‘𝐶)𝑥) | |
| 6 | ciclcl 17717 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | 5, 6 | impbida 800 | . 2 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐 ‘𝐶)𝑥)) |
| 8 | 1, 2, 4, 7 | iserd 8657 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 Er wer 8628 Basecbs 17127 Catccat 17578 ≃𝑐 ccic 17710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-supp 8100 df-er 8631 df-cat 17582 df-cid 17583 df-sect 17662 df-inv 17663 df-iso 17664 df-cic 17711 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |