Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicerALT Structured version   Visualization version   GIF version

Theorem cicerALT 48920
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cicerALT (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))

Proof of Theorem cicerALT
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcic 48919 . 2 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
2 cicsym 17820 . 2 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦) → 𝑦( ≃𝑐𝐶)𝑥)
3 cictr 17821 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧) → 𝑥( ≃𝑐𝐶)𝑧)
433expb 1120 . 2 ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧)) → 𝑥( ≃𝑐𝐶)𝑧)
5 cicref 17817 . . 3 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐𝐶)𝑥)
6 ciclcl 17818 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶))
75, 6impbida 800 . 2 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐𝐶)𝑥))
81, 2, 4, 7iserd 8753 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5123  cfv 6541   Er wer 8724  Basecbs 17230  Catccat 17679  𝑐 ccic 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-supp 8168  df-er 8727  df-cat 17683  df-cid 17684  df-sect 17763  df-inv 17764  df-iso 17765  df-cic 17812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator