| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cicerALT | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cicerALT | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic 49007 | . 2 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | |
| 2 | cicsym 17742 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦) → 𝑦( ≃𝑐 ‘𝐶)𝑥) | |
| 3 | cictr 17743 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧) → 𝑥( ≃𝑐 ‘𝐶)𝑧) | |
| 4 | 3 | 3expb 1120 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧)) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 5 | cicref 17739 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐 ‘𝐶)𝑥) | |
| 6 | ciclcl 17740 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | 5, 6 | impbida 800 | . 2 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐 ‘𝐶)𝑥)) |
| 8 | 1, 2, 4, 7 | iserd 8674 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 Er wer 8645 Basecbs 17155 Catccat 17601 ≃𝑐 ccic 17733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-supp 8117 df-er 8648 df-cat 17605 df-cid 17606 df-sect 17685 df-inv 17686 df-iso 17687 df-cic 17734 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |