| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cicerALT | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cicerALT | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic 49022 | . 2 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | |
| 2 | cicsym 17772 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦) → 𝑦( ≃𝑐 ‘𝐶)𝑥) | |
| 3 | cictr 17773 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧) → 𝑥( ≃𝑐 ‘𝐶)𝑧) | |
| 4 | 3 | 3expb 1120 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧)) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 5 | cicref 17769 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐 ‘𝐶)𝑥) | |
| 6 | ciclcl 17770 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | 5, 6 | impbida 800 | . 2 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐 ‘𝐶)𝑥)) |
| 8 | 1, 2, 4, 7 | iserd 8699 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5109 ‘cfv 6513 Er wer 8670 Basecbs 17185 Catccat 17631 ≃𝑐 ccic 17763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-supp 8142 df-er 8673 df-cat 17635 df-cid 17636 df-sect 17715 df-inv 17716 df-iso 17717 df-cic 17764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |