| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cicerALT | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cicerALT | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic 49077 | . 2 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | |
| 2 | cicsym 17706 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦) → 𝑦( ≃𝑐 ‘𝐶)𝑥) | |
| 3 | cictr 17707 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧) → 𝑥( ≃𝑐 ‘𝐶)𝑧) | |
| 4 | 3 | 3expb 1120 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧)) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 5 | cicref 17703 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐 ‘𝐶)𝑥) | |
| 6 | ciclcl 17704 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | 5, 6 | impbida 800 | . 2 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐 ‘𝐶)𝑥)) |
| 8 | 1, 2, 4, 7 | iserd 8643 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 Er wer 8614 Basecbs 17115 Catccat 17565 ≃𝑐 ccic 17697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-supp 8086 df-er 8617 df-cat 17569 df-cid 17570 df-sect 17649 df-inv 17650 df-iso 17651 df-cic 17698 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |