| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cicerALT | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cicerALT | ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic 48919 | . 2 ⊢ (𝐶 ∈ Cat → Rel ( ≃𝑐 ‘𝐶)) | |
| 2 | cicsym 17820 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦) → 𝑦( ≃𝑐 ‘𝐶)𝑥) | |
| 3 | cictr 17821 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧) → 𝑥( ≃𝑐 ‘𝐶)𝑧) | |
| 4 | 3 | 3expb 1120 | . 2 ⊢ ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐 ‘𝐶)𝑦 ∧ 𝑦( ≃𝑐 ‘𝐶)𝑧)) → 𝑥( ≃𝑐 ‘𝐶)𝑧) |
| 5 | cicref 17817 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐 ‘𝐶)𝑥) | |
| 6 | ciclcl 17818 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐 ‘𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | 5, 6 | impbida 800 | . 2 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐 ‘𝐶)𝑥)) |
| 8 | 1, 2, 4, 7 | iserd 8753 | 1 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) Er (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Er wer 8724 Basecbs 17230 Catccat 17679 ≃𝑐 ccic 17811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-supp 8168 df-er 8727 df-cat 17683 df-cid 17684 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |