Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cicpropd Structured version   Visualization version   GIF version

Theorem cicpropd 49027
Description: Two structures with the same base, hom-sets and composition operation have the same isomorphic objects. (Contributed by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
cicpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
cicpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
cicpropd (𝜑 → ( ≃𝑐𝐶) = ( ≃𝑐𝐷))

Proof of Theorem cicpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cicpropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
2 cicpropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
31, 2cicpropdlem 49026 . . 3 ((𝜑𝑓 ∈ ( ≃𝑐𝐶)) → 𝑓 ∈ ( ≃𝑐𝐷))
41eqcomd 2736 . . . 4 (𝜑 → (Homf𝐷) = (Homf𝐶))
52eqcomd 2736 . . . 4 (𝜑 → (compf𝐷) = (compf𝐶))
64, 5cicpropdlem 49026 . . 3 ((𝜑𝑓 ∈ ( ≃𝑐𝐷)) → 𝑓 ∈ ( ≃𝑐𝐶))
73, 6impbida 800 . 2 (𝜑 → (𝑓 ∈ ( ≃𝑐𝐶) ↔ 𝑓 ∈ ( ≃𝑐𝐷)))
87eqrdv 2728 1 (𝜑 → ( ≃𝑐𝐶) = ( ≃𝑐𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  Homf chomf 17633  compfccomf 17634  𝑐 ccic 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-supp 8142  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-sect 17715  df-inv 17716  df-iso 17717  df-cic 17764
This theorem is referenced by:  oppccicb  49028
  Copyright terms: Public domain W3C validator