![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clim2cf | Structured version Visualization version GIF version |
Description: Express the predicate 𝐹 converges to 𝐴. Similar to clim2 15427, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
clim2cf.nf | ⊢ Ⅎ𝑘𝐹 |
clim2cf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim2cf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
clim2cf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
clim2cf.fv | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
clim2cf.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
clim2cf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
clim2cf | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2cf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 1 | biantrurd 533 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
3 | clim2cf.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 3 | uztrn2 12820 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
5 | clim2cf.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
6 | 5 | biantrurd 533 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
7 | 4, 6 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
8 | 7 | anassrs 468 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐵 − 𝐴)) < 𝑥 ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
9 | 8 | ralbidva 3174 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
10 | 9 | rexbidva 3175 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
11 | 10 | ralbidv 3176 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥))) |
12 | clim2cf.nf | . . 3 ⊢ Ⅎ𝑘𝐹 | |
13 | clim2cf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | clim2cf.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
15 | clim2cf.fv | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
16 | 12, 3, 13, 14, 15 | clim2f 44111 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) |
17 | 2, 11, 16 | 3bitr4rd 311 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2882 ∀wral 3060 ∃wrex 3069 class class class wbr 5138 ‘cfv 6529 (class class class)co 7390 ℂcc 11087 < clt 11227 − cmin 11423 ℤcz 12537 ℤ≥cuz 12801 ℝ+crp 12953 abscabs 15160 ⇝ cli 15407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7705 ax-cnex 11145 ax-resscn 11146 ax-pre-lttri 11163 ax-pre-lttrn 11164 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3430 df-v 3472 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4520 df-pw 4595 df-sn 4620 df-pr 4622 df-op 4626 df-uni 4899 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6481 df-fun 6531 df-fn 6532 df-f 6533 df-f1 6534 df-fo 6535 df-f1o 6536 df-fv 6537 df-ov 7393 df-er 8683 df-en 8920 df-dom 8921 df-sdom 8922 df-pnf 11229 df-mnf 11230 df-xr 11231 df-ltxr 11232 df-le 11233 df-neg 11426 df-z 12538 df-uz 12802 df-clim 15411 |
This theorem is referenced by: clim0cf 44129 |
Copyright terms: Public domain | W3C validator |