| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12811 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2839 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: eluznn0 12876 eluznn 12877 elfzuz2 13490 rexuz3 15315 r19.29uz 15317 r19.2uz 15318 clim2 15470 clim2c 15471 clim0c 15473 rlimclim1 15511 2clim 15538 climabs0 15551 climcn1 15558 climcn2 15559 climsqz 15607 climsqz2 15608 clim2ser 15621 clim2ser2 15622 climub 15628 climsup 15636 caurcvg2 15644 serf0 15647 iseraltlem1 15648 iseralt 15651 cvgcmp 15782 cvgcmpce 15784 isumsup2 15812 mertenslem1 15850 clim2div 15855 ntrivcvgfvn0 15865 ntrivcvgmullem 15867 fprodeq0 15941 lmbrf 23147 lmss 23185 lmres 23187 txlm 23535 uzrest 23784 lmmcvg 25161 lmmbrf 25162 iscau4 25179 iscauf 25180 caucfil 25183 iscmet3lem3 25190 iscmet3lem1 25191 lmle 25201 lmclim 25203 mbflimsup 25567 ulm2 26294 ulmcaulem 26303 ulmcau 26304 ulmss 26306 ulmdvlem1 26309 ulmdvlem3 26311 mtest 26313 itgulm 26317 logfaclbnd 27133 bposlem6 27200 caures 37754 caushft 37755 dvgrat 44301 cvgdvgrat 44302 climinf 45604 clim2f 45634 clim2cf 45648 clim0cf 45652 clim2f2 45668 fnlimfvre 45672 allbutfifvre 45673 limsupvaluz2 45736 limsupreuzmpt 45737 supcnvlimsup 45738 climuzlem 45741 climisp 45744 climrescn 45746 climxrrelem 45747 climxrre 45748 limsupgtlem 45775 liminfreuzlem 45800 liminfltlem 45802 liminflimsupclim 45805 xlimpnfxnegmnf 45812 liminflbuz2 45813 liminfpnfuz 45814 liminflimsupxrre 45815 xlimmnfvlem2 45831 xlimmnfv 45832 xlimpnfvlem2 45835 xlimpnfv 45836 xlimmnfmpt 45841 xlimpnfmpt 45842 climxlim2lem 45843 xlimpnfxnegmnf2 45856 meaiuninc3v 46482 smflimlem1 46769 smflimlem2 46770 smflimlem3 46771 smflimmpt 46808 smflimsuplem4 46821 smflimsuplem7 46824 smflimsupmpt 46827 smfliminfmpt 46830 |
| Copyright terms: Public domain | W3C validator |