| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2823 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12750 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2842 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: eluznn0 12815 eluznn 12816 elfzuz2 13429 rexuz3 15256 r19.29uz 15258 r19.2uz 15259 clim2 15411 clim2c 15412 clim0c 15414 rlimclim1 15452 2clim 15479 climabs0 15492 climcn1 15499 climcn2 15500 climsqz 15548 climsqz2 15549 clim2ser 15562 clim2ser2 15563 climub 15569 climsup 15577 caurcvg2 15585 serf0 15588 iseraltlem1 15589 iseralt 15592 cvgcmp 15723 cvgcmpce 15725 isumsup2 15753 mertenslem1 15791 clim2div 15796 ntrivcvgfvn0 15806 ntrivcvgmullem 15808 fprodeq0 15882 lmbrf 23175 lmss 23213 lmres 23215 txlm 23563 uzrest 23812 lmmcvg 25188 lmmbrf 25189 iscau4 25206 iscauf 25207 caucfil 25210 iscmet3lem3 25217 iscmet3lem1 25218 lmle 25228 lmclim 25230 mbflimsup 25594 ulm2 26321 ulmcaulem 26330 ulmcau 26331 ulmss 26333 ulmdvlem1 26336 ulmdvlem3 26338 mtest 26340 itgulm 26344 logfaclbnd 27160 bposlem6 27227 caures 37799 caushft 37800 dvgrat 44404 cvgdvgrat 44405 climinf 45705 clim2f 45733 clim2cf 45747 clim0cf 45751 clim2f2 45767 fnlimfvre 45771 allbutfifvre 45772 limsupvaluz2 45835 limsupreuzmpt 45836 supcnvlimsup 45837 climuzlem 45840 climisp 45843 climrescn 45845 climxrrelem 45846 climxrre 45847 limsupgtlem 45874 liminfreuzlem 45899 liminfltlem 45901 liminflimsupclim 45904 xlimpnfxnegmnf 45911 liminflbuz2 45912 liminfpnfuz 45913 liminflimsupxrre 45914 xlimmnfvlem2 45930 xlimmnfv 45931 xlimpnfvlem2 45934 xlimpnfv 45935 xlimmnfmpt 45940 xlimpnfmpt 45941 climxlim2lem 45942 xlimpnfxnegmnf2 45955 meaiuninc3v 46581 smflimlem1 46868 smflimlem2 46869 smflimlem3 46870 smflimmpt 46907 smflimsuplem4 46920 smflimsuplem7 46923 smflimsupmpt 46926 smfliminfmpt 46929 |
| Copyright terms: Public domain | W3C validator |