Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2829 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 12456 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 462 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 584 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | eleqtrrdi 2849 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 ℤ≥cuz 12438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-neg 11065 df-z 12177 df-uz 12439 |
This theorem is referenced by: eluznn0 12513 eluznn 12514 elfzuz2 13117 rexuz3 14912 r19.29uz 14914 r19.2uz 14915 clim2 15065 clim2c 15066 clim0c 15068 rlimclim1 15106 2clim 15133 climabs0 15146 climcn1 15153 climcn2 15154 climsqz 15202 climsqz2 15203 clim2ser 15218 clim2ser2 15219 climub 15225 climsup 15233 caurcvg2 15241 serf0 15244 iseraltlem1 15245 iseralt 15248 cvgcmp 15380 cvgcmpce 15382 isumsup2 15410 mertenslem1 15448 clim2div 15453 ntrivcvgfvn0 15463 ntrivcvgmullem 15465 fprodeq0 15537 lmbrf 22157 lmss 22195 lmres 22197 txlm 22545 uzrest 22794 lmmcvg 24158 lmmbrf 24159 iscau4 24176 iscauf 24177 caucfil 24180 iscmet3lem3 24187 iscmet3lem1 24188 lmle 24198 lmclim 24200 mbflimsup 24563 ulm2 25277 ulmcaulem 25286 ulmcau 25287 ulmss 25289 ulmdvlem1 25292 ulmdvlem3 25294 mtest 25296 itgulm 25300 logfaclbnd 26103 bposlem6 26170 caures 35655 caushft 35656 dvgrat 41603 cvgdvgrat 41604 climinf 42822 clim2f 42852 clim2cf 42866 clim0cf 42870 clim2f2 42886 fnlimfvre 42890 allbutfifvre 42891 limsupvaluz2 42954 limsupreuzmpt 42955 supcnvlimsup 42956 climuzlem 42959 climisp 42962 climrescn 42964 climxrrelem 42965 climxrre 42966 limsupgtlem 42993 liminfreuzlem 43018 liminfltlem 43020 liminflimsupclim 43023 xlimpnfxnegmnf 43030 liminflbuz2 43031 liminfpnfuz 43032 liminflimsupxrre 43033 xlimmnfvlem2 43049 xlimmnfv 43050 xlimpnfvlem2 43053 xlimpnfv 43054 xlimmnfmpt 43059 xlimpnfmpt 43060 climxlim2lem 43061 xlimpnfxnegmnf2 43074 meaiuninc3v 43697 smflimlem1 43978 smflimlem2 43979 smflimlem3 43980 smflimmpt 44015 smflimsuplem4 44028 smflimsuplem7 44031 smflimsupmpt 44034 smfliminfmpt 44037 |
Copyright terms: Public domain | W3C validator |