![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2826 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 12840 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 460 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 582 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | eleqtrrdi 2845 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 ℤ≥cuz 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-neg 11447 df-z 12559 df-uz 12823 |
This theorem is referenced by: eluznn0 12901 eluznn 12902 elfzuz2 13506 rexuz3 15295 r19.29uz 15297 r19.2uz 15298 clim2 15448 clim2c 15449 clim0c 15451 rlimclim1 15489 2clim 15516 climabs0 15529 climcn1 15536 climcn2 15537 climsqz 15585 climsqz2 15586 clim2ser 15601 clim2ser2 15602 climub 15608 climsup 15616 caurcvg2 15624 serf0 15627 iseraltlem1 15628 iseralt 15631 cvgcmp 15762 cvgcmpce 15764 isumsup2 15792 mertenslem1 15830 clim2div 15835 ntrivcvgfvn0 15845 ntrivcvgmullem 15847 fprodeq0 15919 lmbrf 22764 lmss 22802 lmres 22804 txlm 23152 uzrest 23401 lmmcvg 24778 lmmbrf 24779 iscau4 24796 iscauf 24797 caucfil 24800 iscmet3lem3 24807 iscmet3lem1 24808 lmle 24818 lmclim 24820 mbflimsup 25183 ulm2 25897 ulmcaulem 25906 ulmcau 25907 ulmss 25909 ulmdvlem1 25912 ulmdvlem3 25914 mtest 25916 itgulm 25920 logfaclbnd 26725 bposlem6 26792 caures 36628 caushft 36629 dvgrat 43071 cvgdvgrat 43072 climinf 44322 clim2f 44352 clim2cf 44366 clim0cf 44370 clim2f2 44386 fnlimfvre 44390 allbutfifvre 44391 limsupvaluz2 44454 limsupreuzmpt 44455 supcnvlimsup 44456 climuzlem 44459 climisp 44462 climrescn 44464 climxrrelem 44465 climxrre 44466 limsupgtlem 44493 liminfreuzlem 44518 liminfltlem 44520 liminflimsupclim 44523 xlimpnfxnegmnf 44530 liminflbuz2 44531 liminfpnfuz 44532 liminflimsupxrre 44533 xlimmnfvlem2 44549 xlimmnfv 44550 xlimpnfvlem2 44553 xlimpnfv 44554 xlimmnfmpt 44559 xlimpnfmpt 44560 climxlim2lem 44561 xlimpnfxnegmnf2 44574 meaiuninc3v 45200 smflimlem1 45487 smflimlem2 45488 smflimlem3 45489 smflimmpt 45526 smflimsuplem4 45539 smflimsuplem7 45542 smflimsupmpt 45545 smfliminfmpt 45548 |
Copyright terms: Public domain | W3C validator |