Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 12600 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 459 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | eleqtrrdi 2850 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 |
This theorem is referenced by: eluznn0 12657 eluznn 12658 elfzuz2 13261 rexuz3 15060 r19.29uz 15062 r19.2uz 15063 clim2 15213 clim2c 15214 clim0c 15216 rlimclim1 15254 2clim 15281 climabs0 15294 climcn1 15301 climcn2 15302 climsqz 15350 climsqz2 15351 clim2ser 15366 clim2ser2 15367 climub 15373 climsup 15381 caurcvg2 15389 serf0 15392 iseraltlem1 15393 iseralt 15396 cvgcmp 15528 cvgcmpce 15530 isumsup2 15558 mertenslem1 15596 clim2div 15601 ntrivcvgfvn0 15611 ntrivcvgmullem 15613 fprodeq0 15685 lmbrf 22411 lmss 22449 lmres 22451 txlm 22799 uzrest 23048 lmmcvg 24425 lmmbrf 24426 iscau4 24443 iscauf 24444 caucfil 24447 iscmet3lem3 24454 iscmet3lem1 24455 lmle 24465 lmclim 24467 mbflimsup 24830 ulm2 25544 ulmcaulem 25553 ulmcau 25554 ulmss 25556 ulmdvlem1 25559 ulmdvlem3 25561 mtest 25563 itgulm 25567 logfaclbnd 26370 bposlem6 26437 caures 35918 caushft 35919 dvgrat 41930 cvgdvgrat 41931 climinf 43147 clim2f 43177 clim2cf 43191 clim0cf 43195 clim2f2 43211 fnlimfvre 43215 allbutfifvre 43216 limsupvaluz2 43279 limsupreuzmpt 43280 supcnvlimsup 43281 climuzlem 43284 climisp 43287 climrescn 43289 climxrrelem 43290 climxrre 43291 limsupgtlem 43318 liminfreuzlem 43343 liminfltlem 43345 liminflimsupclim 43348 xlimpnfxnegmnf 43355 liminflbuz2 43356 liminfpnfuz 43357 liminflimsupxrre 43358 xlimmnfvlem2 43374 xlimmnfv 43375 xlimpnfvlem2 43378 xlimpnfv 43379 xlimmnfmpt 43384 xlimpnfmpt 43385 climxlim2lem 43386 xlimpnfxnegmnf2 43399 meaiuninc3v 44022 smflimlem1 44306 smflimlem2 44307 smflimlem3 44308 smflimmpt 44343 smflimsuplem4 44356 smflimsuplem7 44359 smflimsupmpt 44362 smfliminfmpt 44365 |
Copyright terms: Public domain | W3C validator |