| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2821 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12818 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2840 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: eluznn0 12883 eluznn 12884 elfzuz2 13497 rexuz3 15322 r19.29uz 15324 r19.2uz 15325 clim2 15477 clim2c 15478 clim0c 15480 rlimclim1 15518 2clim 15545 climabs0 15558 climcn1 15565 climcn2 15566 climsqz 15614 climsqz2 15615 clim2ser 15628 clim2ser2 15629 climub 15635 climsup 15643 caurcvg2 15651 serf0 15654 iseraltlem1 15655 iseralt 15658 cvgcmp 15789 cvgcmpce 15791 isumsup2 15819 mertenslem1 15857 clim2div 15862 ntrivcvgfvn0 15872 ntrivcvgmullem 15874 fprodeq0 15948 lmbrf 23154 lmss 23192 lmres 23194 txlm 23542 uzrest 23791 lmmcvg 25168 lmmbrf 25169 iscau4 25186 iscauf 25187 caucfil 25190 iscmet3lem3 25197 iscmet3lem1 25198 lmle 25208 lmclim 25210 mbflimsup 25574 ulm2 26301 ulmcaulem 26310 ulmcau 26311 ulmss 26313 ulmdvlem1 26316 ulmdvlem3 26318 mtest 26320 itgulm 26324 logfaclbnd 27140 bposlem6 27207 caures 37761 caushft 37762 dvgrat 44308 cvgdvgrat 44309 climinf 45611 clim2f 45641 clim2cf 45655 clim0cf 45659 clim2f2 45675 fnlimfvre 45679 allbutfifvre 45680 limsupvaluz2 45743 limsupreuzmpt 45744 supcnvlimsup 45745 climuzlem 45748 climisp 45751 climrescn 45753 climxrrelem 45754 climxrre 45755 limsupgtlem 45782 liminfreuzlem 45807 liminfltlem 45809 liminflimsupclim 45812 xlimpnfxnegmnf 45819 liminflbuz2 45820 liminfpnfuz 45821 liminflimsupxrre 45822 xlimmnfvlem2 45838 xlimmnfv 45839 xlimpnfvlem2 45842 xlimpnfv 45843 xlimmnfmpt 45848 xlimpnfmpt 45849 climxlim2lem 45850 xlimpnfxnegmnf2 45863 meaiuninc3v 46489 smflimlem1 46776 smflimlem2 46777 smflimlem3 46778 smflimmpt 46815 smflimsuplem4 46828 smflimsuplem7 46831 smflimsupmpt 46834 smfliminfmpt 46837 |
| Copyright terms: Public domain | W3C validator |