| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12753 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2839 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 |
| This theorem is referenced by: eluznn0 12818 eluznn 12819 elfzuz2 13432 rexuz3 15256 r19.29uz 15258 r19.2uz 15259 clim2 15411 clim2c 15412 clim0c 15414 rlimclim1 15452 2clim 15479 climabs0 15492 climcn1 15499 climcn2 15500 climsqz 15548 climsqz2 15549 clim2ser 15562 clim2ser2 15563 climub 15569 climsup 15577 caurcvg2 15585 serf0 15588 iseraltlem1 15589 iseralt 15592 cvgcmp 15723 cvgcmpce 15725 isumsup2 15753 mertenslem1 15791 clim2div 15796 ntrivcvgfvn0 15806 ntrivcvgmullem 15808 fprodeq0 15882 lmbrf 23145 lmss 23183 lmres 23185 txlm 23533 uzrest 23782 lmmcvg 25159 lmmbrf 25160 iscau4 25177 iscauf 25178 caucfil 25181 iscmet3lem3 25188 iscmet3lem1 25189 lmle 25199 lmclim 25201 mbflimsup 25565 ulm2 26292 ulmcaulem 26301 ulmcau 26302 ulmss 26304 ulmdvlem1 26307 ulmdvlem3 26309 mtest 26311 itgulm 26315 logfaclbnd 27131 bposlem6 27198 caures 37760 caushft 37761 dvgrat 44305 cvgdvgrat 44306 climinf 45607 clim2f 45637 clim2cf 45651 clim0cf 45655 clim2f2 45671 fnlimfvre 45675 allbutfifvre 45676 limsupvaluz2 45739 limsupreuzmpt 45740 supcnvlimsup 45741 climuzlem 45744 climisp 45747 climrescn 45749 climxrrelem 45750 climxrre 45751 limsupgtlem 45778 liminfreuzlem 45803 liminfltlem 45805 liminflimsupclim 45808 xlimpnfxnegmnf 45815 liminflbuz2 45816 liminfpnfuz 45817 liminflimsupxrre 45818 xlimmnfvlem2 45834 xlimmnfv 45835 xlimpnfvlem2 45838 xlimpnfv 45839 xlimmnfmpt 45844 xlimpnfmpt 45845 climxlim2lem 45846 xlimpnfxnegmnf2 45859 meaiuninc3v 46485 smflimlem1 46772 smflimlem2 46773 smflimlem3 46774 smflimmpt 46811 smflimsuplem4 46824 smflimsuplem7 46827 smflimsupmpt 46830 smfliminfmpt 46833 |
| Copyright terms: Public domain | W3C validator |