![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2836 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 12921 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 580 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | eleqtrrdi 2855 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: eluznn0 12982 eluznn 12983 elfzuz2 13589 rexuz3 15397 r19.29uz 15399 r19.2uz 15400 clim2 15550 clim2c 15551 clim0c 15553 rlimclim1 15591 2clim 15618 climabs0 15631 climcn1 15638 climcn2 15639 climsqz 15687 climsqz2 15688 clim2ser 15703 clim2ser2 15704 climub 15710 climsup 15718 caurcvg2 15726 serf0 15729 iseraltlem1 15730 iseralt 15733 cvgcmp 15864 cvgcmpce 15866 isumsup2 15894 mertenslem1 15932 clim2div 15937 ntrivcvgfvn0 15947 ntrivcvgmullem 15949 fprodeq0 16023 lmbrf 23289 lmss 23327 lmres 23329 txlm 23677 uzrest 23926 lmmcvg 25314 lmmbrf 25315 iscau4 25332 iscauf 25333 caucfil 25336 iscmet3lem3 25343 iscmet3lem1 25344 lmle 25354 lmclim 25356 mbflimsup 25720 ulm2 26446 ulmcaulem 26455 ulmcau 26456 ulmss 26458 ulmdvlem1 26461 ulmdvlem3 26463 mtest 26465 itgulm 26469 logfaclbnd 27284 bposlem6 27351 caures 37720 caushft 37721 dvgrat 44281 cvgdvgrat 44282 climinf 45527 clim2f 45557 clim2cf 45571 clim0cf 45575 clim2f2 45591 fnlimfvre 45595 allbutfifvre 45596 limsupvaluz2 45659 limsupreuzmpt 45660 supcnvlimsup 45661 climuzlem 45664 climisp 45667 climrescn 45669 climxrrelem 45670 climxrre 45671 limsupgtlem 45698 liminfreuzlem 45723 liminfltlem 45725 liminflimsupclim 45728 xlimpnfxnegmnf 45735 liminflbuz2 45736 liminfpnfuz 45737 liminflimsupxrre 45738 xlimmnfvlem2 45754 xlimmnfv 45755 xlimpnfvlem2 45758 xlimpnfv 45759 xlimmnfmpt 45764 xlimpnfmpt 45765 climxlim2lem 45766 xlimpnfxnegmnf2 45779 meaiuninc3v 46405 smflimlem1 46692 smflimlem2 46693 smflimlem3 46694 smflimmpt 46731 smflimsuplem4 46744 smflimsuplem7 46747 smflimsupmpt 46750 smfliminfmpt 46753 |
Copyright terms: Public domain | W3C validator |