Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 12529 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 580 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | eleqtrrdi 2850 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: eluznn0 12586 eluznn 12587 elfzuz2 13190 rexuz3 14988 r19.29uz 14990 r19.2uz 14991 clim2 15141 clim2c 15142 clim0c 15144 rlimclim1 15182 2clim 15209 climabs0 15222 climcn1 15229 climcn2 15230 climsqz 15278 climsqz2 15279 clim2ser 15294 clim2ser2 15295 climub 15301 climsup 15309 caurcvg2 15317 serf0 15320 iseraltlem1 15321 iseralt 15324 cvgcmp 15456 cvgcmpce 15458 isumsup2 15486 mertenslem1 15524 clim2div 15529 ntrivcvgfvn0 15539 ntrivcvgmullem 15541 fprodeq0 15613 lmbrf 22319 lmss 22357 lmres 22359 txlm 22707 uzrest 22956 lmmcvg 24330 lmmbrf 24331 iscau4 24348 iscauf 24349 caucfil 24352 iscmet3lem3 24359 iscmet3lem1 24360 lmle 24370 lmclim 24372 mbflimsup 24735 ulm2 25449 ulmcaulem 25458 ulmcau 25459 ulmss 25461 ulmdvlem1 25464 ulmdvlem3 25466 mtest 25468 itgulm 25472 logfaclbnd 26275 bposlem6 26342 caures 35845 caushft 35846 dvgrat 41819 cvgdvgrat 41820 climinf 43037 clim2f 43067 clim2cf 43081 clim0cf 43085 clim2f2 43101 fnlimfvre 43105 allbutfifvre 43106 limsupvaluz2 43169 limsupreuzmpt 43170 supcnvlimsup 43171 climuzlem 43174 climisp 43177 climrescn 43179 climxrrelem 43180 climxrre 43181 limsupgtlem 43208 liminfreuzlem 43233 liminfltlem 43235 liminflimsupclim 43238 xlimpnfxnegmnf 43245 liminflbuz2 43246 liminfpnfuz 43247 liminflimsupxrre 43248 xlimmnfvlem2 43264 xlimmnfv 43265 xlimpnfvlem2 43268 xlimpnfv 43269 xlimmnfmpt 43274 xlimpnfmpt 43275 climxlim2lem 43276 xlimpnfxnegmnf2 43289 meaiuninc3v 43912 smflimlem1 44193 smflimlem2 44194 smflimlem3 44195 smflimmpt 44230 smflimsuplem4 44243 smflimsuplem7 44246 smflimsupmpt 44249 smfliminfmpt 44252 |
Copyright terms: Public domain | W3C validator |