| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12787 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2839 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: eluznn0 12852 eluznn 12853 elfzuz2 13466 rexuz3 15291 r19.29uz 15293 r19.2uz 15294 clim2 15446 clim2c 15447 clim0c 15449 rlimclim1 15487 2clim 15514 climabs0 15527 climcn1 15534 climcn2 15535 climsqz 15583 climsqz2 15584 clim2ser 15597 clim2ser2 15598 climub 15604 climsup 15612 caurcvg2 15620 serf0 15623 iseraltlem1 15624 iseralt 15627 cvgcmp 15758 cvgcmpce 15760 isumsup2 15788 mertenslem1 15826 clim2div 15831 ntrivcvgfvn0 15841 ntrivcvgmullem 15843 fprodeq0 15917 lmbrf 23180 lmss 23218 lmres 23220 txlm 23568 uzrest 23817 lmmcvg 25194 lmmbrf 25195 iscau4 25212 iscauf 25213 caucfil 25216 iscmet3lem3 25223 iscmet3lem1 25224 lmle 25234 lmclim 25236 mbflimsup 25600 ulm2 26327 ulmcaulem 26336 ulmcau 26337 ulmss 26339 ulmdvlem1 26342 ulmdvlem3 26344 mtest 26346 itgulm 26350 logfaclbnd 27166 bposlem6 27233 caures 37747 caushft 37748 dvgrat 44294 cvgdvgrat 44295 climinf 45597 clim2f 45627 clim2cf 45641 clim0cf 45645 clim2f2 45661 fnlimfvre 45665 allbutfifvre 45666 limsupvaluz2 45729 limsupreuzmpt 45730 supcnvlimsup 45731 climuzlem 45734 climisp 45737 climrescn 45739 climxrrelem 45740 climxrre 45741 limsupgtlem 45768 liminfreuzlem 45793 liminfltlem 45795 liminflimsupclim 45798 xlimpnfxnegmnf 45805 liminflbuz2 45806 liminfpnfuz 45807 liminflimsupxrre 45808 xlimmnfvlem2 45824 xlimmnfv 45825 xlimpnfvlem2 45828 xlimpnfv 45829 xlimmnfmpt 45834 xlimpnfmpt 45835 climxlim2lem 45836 xlimpnfxnegmnf2 45849 meaiuninc3v 46475 smflimlem1 46762 smflimlem2 46763 smflimlem3 46764 smflimmpt 46801 smflimsuplem4 46814 smflimsuplem7 46817 smflimsupmpt 46820 smfliminfmpt 46823 |
| Copyright terms: Public domain | W3C validator |