| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2826 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12868 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2845 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 ℤ≥cuz 12850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-neg 11467 df-z 12587 df-uz 12851 |
| This theorem is referenced by: eluznn0 12931 eluznn 12932 elfzuz2 13544 rexuz3 15365 r19.29uz 15367 r19.2uz 15368 clim2 15518 clim2c 15519 clim0c 15521 rlimclim1 15559 2clim 15586 climabs0 15599 climcn1 15606 climcn2 15607 climsqz 15655 climsqz2 15656 clim2ser 15669 clim2ser2 15670 climub 15676 climsup 15684 caurcvg2 15692 serf0 15695 iseraltlem1 15696 iseralt 15699 cvgcmp 15830 cvgcmpce 15832 isumsup2 15860 mertenslem1 15898 clim2div 15903 ntrivcvgfvn0 15913 ntrivcvgmullem 15915 fprodeq0 15989 lmbrf 23196 lmss 23234 lmres 23236 txlm 23584 uzrest 23833 lmmcvg 25211 lmmbrf 25212 iscau4 25229 iscauf 25230 caucfil 25233 iscmet3lem3 25240 iscmet3lem1 25241 lmle 25251 lmclim 25253 mbflimsup 25617 ulm2 26344 ulmcaulem 26353 ulmcau 26354 ulmss 26356 ulmdvlem1 26359 ulmdvlem3 26361 mtest 26363 itgulm 26367 logfaclbnd 27183 bposlem6 27250 caures 37730 caushft 37731 dvgrat 44284 cvgdvgrat 44285 climinf 45583 clim2f 45613 clim2cf 45627 clim0cf 45631 clim2f2 45647 fnlimfvre 45651 allbutfifvre 45652 limsupvaluz2 45715 limsupreuzmpt 45716 supcnvlimsup 45717 climuzlem 45720 climisp 45723 climrescn 45725 climxrrelem 45726 climxrre 45727 limsupgtlem 45754 liminfreuzlem 45779 liminfltlem 45781 liminflimsupclim 45784 xlimpnfxnegmnf 45791 liminflbuz2 45792 liminfpnfuz 45793 liminflimsupxrre 45794 xlimmnfvlem2 45810 xlimmnfv 45811 xlimpnfvlem2 45814 xlimpnfv 45815 xlimmnfmpt 45820 xlimpnfmpt 45821 climxlim2lem 45822 xlimpnfxnegmnf2 45835 meaiuninc3v 46461 smflimlem1 46748 smflimlem2 46749 smflimlem3 46750 smflimmpt 46787 smflimsuplem4 46800 smflimsuplem7 46803 smflimsupmpt 46806 smfliminfmpt 46809 |
| Copyright terms: Public domain | W3C validator |