| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| Ref | Expression |
|---|---|
| uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
| Ref | Expression |
|---|---|
| uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | uztrn 12789 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
| 6 | 5, 1 | eleqtrrdi 2839 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 ℤ≥cuz 12771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-pre-lttri 11120 ax-pre-lttrn 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-neg 11386 df-z 12508 df-uz 12772 |
| This theorem is referenced by: eluznn0 12854 eluznn 12855 elfzuz2 13468 rexuz3 15292 r19.29uz 15294 r19.2uz 15295 clim2 15447 clim2c 15448 clim0c 15450 rlimclim1 15488 2clim 15515 climabs0 15528 climcn1 15535 climcn2 15536 climsqz 15584 climsqz2 15585 clim2ser 15598 clim2ser2 15599 climub 15605 climsup 15613 caurcvg2 15621 serf0 15624 iseraltlem1 15625 iseralt 15628 cvgcmp 15759 cvgcmpce 15761 isumsup2 15789 mertenslem1 15827 clim2div 15832 ntrivcvgfvn0 15842 ntrivcvgmullem 15844 fprodeq0 15918 lmbrf 23181 lmss 23219 lmres 23221 txlm 23569 uzrest 23818 lmmcvg 25195 lmmbrf 25196 iscau4 25213 iscauf 25214 caucfil 25217 iscmet3lem3 25224 iscmet3lem1 25225 lmle 25235 lmclim 25237 mbflimsup 25601 ulm2 26328 ulmcaulem 26337 ulmcau 26338 ulmss 26340 ulmdvlem1 26343 ulmdvlem3 26345 mtest 26347 itgulm 26351 logfaclbnd 27167 bposlem6 27234 caures 37748 caushft 37749 dvgrat 44295 cvgdvgrat 44296 climinf 45598 clim2f 45628 clim2cf 45642 clim0cf 45646 clim2f2 45662 fnlimfvre 45666 allbutfifvre 45667 limsupvaluz2 45730 limsupreuzmpt 45731 supcnvlimsup 45732 climuzlem 45735 climisp 45738 climrescn 45740 climxrrelem 45741 climxrre 45742 limsupgtlem 45769 liminfreuzlem 45794 liminfltlem 45796 liminflimsupclim 45799 xlimpnfxnegmnf 45806 liminflbuz2 45807 liminfpnfuz 45808 liminflimsupxrre 45809 xlimmnfvlem2 45825 xlimmnfv 45826 xlimpnfvlem2 45829 xlimpnfv 45830 xlimmnfmpt 45835 xlimpnfmpt 45836 climxlim2lem 45837 xlimpnfxnegmnf2 45850 meaiuninc3v 46476 smflimlem1 46763 smflimlem2 46764 smflimlem3 46765 smflimmpt 46802 smflimsuplem4 46815 smflimsuplem7 46818 smflimsupmpt 46821 smfliminfmpt 46824 |
| Copyright terms: Public domain | W3C validator |