![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uztrn2 | Structured version Visualization version GIF version |
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
uztrn2.1 | ⊢ 𝑍 = (ℤ≥‘𝐾) |
Ref | Expression |
---|---|
uztrn2 | ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝐾) | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝐾)) |
3 | uztrn 12893 | . . . 4 ⊢ ((𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑀 ∈ (ℤ≥‘𝐾)) | |
4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
5 | 2, 4 | sylanb 581 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝐾)) |
6 | 5, 1 | eleqtrrdi 2849 | 1 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 ℤ≥cuz 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-neg 11492 df-z 12611 df-uz 12876 |
This theorem is referenced by: eluznn0 12956 eluznn 12957 elfzuz2 13565 rexuz3 15383 r19.29uz 15385 r19.2uz 15386 clim2 15536 clim2c 15537 clim0c 15539 rlimclim1 15577 2clim 15604 climabs0 15617 climcn1 15624 climcn2 15625 climsqz 15673 climsqz2 15674 clim2ser 15687 clim2ser2 15688 climub 15694 climsup 15702 caurcvg2 15710 serf0 15713 iseraltlem1 15714 iseralt 15717 cvgcmp 15848 cvgcmpce 15850 isumsup2 15878 mertenslem1 15916 clim2div 15921 ntrivcvgfvn0 15931 ntrivcvgmullem 15933 fprodeq0 16007 lmbrf 23283 lmss 23321 lmres 23323 txlm 23671 uzrest 23920 lmmcvg 25308 lmmbrf 25309 iscau4 25326 iscauf 25327 caucfil 25330 iscmet3lem3 25337 iscmet3lem1 25338 lmle 25348 lmclim 25350 mbflimsup 25714 ulm2 26442 ulmcaulem 26451 ulmcau 26452 ulmss 26454 ulmdvlem1 26457 ulmdvlem3 26459 mtest 26461 itgulm 26465 logfaclbnd 27280 bposlem6 27347 caures 37746 caushft 37747 dvgrat 44307 cvgdvgrat 44308 climinf 45561 clim2f 45591 clim2cf 45605 clim0cf 45609 clim2f2 45625 fnlimfvre 45629 allbutfifvre 45630 limsupvaluz2 45693 limsupreuzmpt 45694 supcnvlimsup 45695 climuzlem 45698 climisp 45701 climrescn 45703 climxrrelem 45704 climxrre 45705 limsupgtlem 45732 liminfreuzlem 45757 liminfltlem 45759 liminflimsupclim 45762 xlimpnfxnegmnf 45769 liminflbuz2 45770 liminfpnfuz 45771 liminflimsupxrre 45772 xlimmnfvlem2 45788 xlimmnfv 45789 xlimpnfvlem2 45792 xlimpnfv 45793 xlimmnfmpt 45798 xlimpnfmpt 45799 climxlim2lem 45800 xlimpnfxnegmnf2 45813 meaiuninc3v 46439 smflimlem1 46726 smflimlem2 46727 smflimlem3 46728 smflimmpt 46765 smflimsuplem4 46778 smflimsuplem7 46781 smflimsupmpt 46784 smfliminfmpt 46787 |
Copyright terms: Public domain | W3C validator |