| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clim0cf | Structured version Visualization version GIF version | ||
| Description: Express the predicate 𝐹 converges to 0. Similar to clim 15515, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| clim0cf.nf | ⊢ Ⅎ𝑘𝐹 |
| clim0cf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| clim0cf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| clim0cf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| clim0cf.fv | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| clim0cf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| clim0cf | ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim0cf.nf | . . 3 ⊢ Ⅎ𝑘𝐹 | |
| 2 | clim0cf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | clim0cf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | clim0cf.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 5 | clim0cf.fv | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 6 | 0cnd 11233 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 7 | clim0cf.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | clim2cf 45646 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥)) |
| 9 | 2 | uztrn2 12876 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 10 | 7 | subid1d 11588 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 − 0) = 𝐵) |
| 11 | 10 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
| 12 | 11 | breq1d 5134 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
| 13 | 9, 12 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
| 14 | 13 | anassrs 467 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
| 15 | 14 | ralbidva 3162 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
| 16 | 15 | rexbidva 3163 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
| 17 | 16 | ralbidv 3164 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
| 18 | 8, 17 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 < clt 11274 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ℝ+crp 13013 abscabs 15258 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-z 12594 df-uz 12858 df-clim 15509 |
| This theorem is referenced by: etransclem48 46278 |
| Copyright terms: Public domain | W3C validator |