Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clim0cf | Structured version Visualization version GIF version |
Description: Express the predicate 𝐹 converges to 0. Similar to clim 15055, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
clim0cf.nf | ⊢ Ⅎ𝑘𝐹 |
clim0cf.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim0cf.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
clim0cf.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
clim0cf.fv | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
clim0cf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
clim0cf | ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim0cf.nf | . . 3 ⊢ Ⅎ𝑘𝐹 | |
2 | clim0cf.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | clim0cf.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | clim0cf.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
5 | clim0cf.fv | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
6 | 0cnd 10826 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
7 | clim0cf.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | clim2cf 42866 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥)) |
9 | 2 | uztrn2 12457 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
10 | 7 | subid1d 11178 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 − 0) = 𝐵) |
11 | 10 | fveq2d 6721 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
12 | 11 | breq1d 5063 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
13 | 9, 12 | sylan2 596 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
14 | 13 | anassrs 471 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
15 | 14 | ralbidva 3117 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
16 | 15 | rexbidva 3215 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
17 | 16 | ralbidv 3118 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
18 | 8, 17 | bitrd 282 | 1 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Ⅎwnfc 2884 ∀wral 3061 ∃wrex 3062 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 < clt 10867 − cmin 11062 ℤcz 12176 ℤ≥cuz 12438 ℝ+crp 12586 abscabs 14797 ⇝ cli 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-z 12177 df-uz 12439 df-clim 15049 |
This theorem is referenced by: etransclem48 43498 |
Copyright terms: Public domain | W3C validator |