Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim0cf Structured version   Visualization version   GIF version

Theorem clim0cf 44143
Description: Express the predicate 𝐹 converges to 0. Similar to clim 15420, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
clim0cf.nf 𝑘𝐹
clim0cf.z 𝑍 = (ℤ𝑀)
clim0cf.m (𝜑𝑀 ∈ ℤ)
clim0cf.f (𝜑𝐹𝑉)
clim0cf.fv ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim0cf.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
clim0cf (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑥)

Proof of Theorem clim0cf
StepHypRef Expression
1 clim0cf.nf . . 3 𝑘𝐹
2 clim0cf.z . . 3 𝑍 = (ℤ𝑀)
3 clim0cf.m . . 3 (𝜑𝑀 ∈ ℤ)
4 clim0cf.f . . 3 (𝜑𝐹𝑉)
5 clim0cf.fv . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
6 0cnd 11189 . . 3 (𝜑 → 0 ∈ ℂ)
7 clim0cf.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
81, 2, 3, 4, 5, 6, 7clim2cf 44139 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥))
92uztrn2 12823 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
107subid1d 11542 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐵 − 0) = 𝐵)
1110fveq2d 6882 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(𝐵 − 0)) = (abs‘𝐵))
1211breq1d 5151 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
139, 12sylan2 593 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
1413anassrs 468 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
1514ralbidva 3174 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
1615rexbidva 3175 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
1716ralbidv 3176 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
188, 17bitrd 278 1 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wnfc 2882  wral 3060  wrex 3069   class class class wbr 5141  cfv 6532  (class class class)co 7393  cc 11090  0cc0 11092   < clt 11230  cmin 11426  cz 12540  cuz 12804  +crp 12956  abscabs 15163  cli 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-z 12541  df-uz 12805  df-clim 15414
This theorem is referenced by:  etransclem48  44771
  Copyright terms: Public domain W3C validator