Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim0cf Structured version   Visualization version   GIF version

Theorem clim0cf 42380
 Description: Express the predicate 𝐹 converges to 0. Similar to clim 14860, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
clim0cf.nf 𝑘𝐹
clim0cf.z 𝑍 = (ℤ𝑀)
clim0cf.m (𝜑𝑀 ∈ ℤ)
clim0cf.f (𝜑𝐹𝑉)
clim0cf.fv ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim0cf.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
clim0cf (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑥)

Proof of Theorem clim0cf
StepHypRef Expression
1 clim0cf.nf . . 3 𝑘𝐹
2 clim0cf.z . . 3 𝑍 = (ℤ𝑀)
3 clim0cf.m . . 3 (𝜑𝑀 ∈ ℤ)
4 clim0cf.f . . 3 (𝜑𝐹𝑉)
5 clim0cf.fv . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
6 0cnd 10638 . . 3 (𝜑 → 0 ∈ ℂ)
7 clim0cf.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
81, 2, 3, 4, 5, 6, 7clim2cf 42376 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥))
92uztrn2 12267 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
107subid1d 10990 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐵 − 0) = 𝐵)
1110fveq2d 6656 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(𝐵 − 0)) = (abs‘𝐵))
1211breq1d 5043 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
139, 12sylan2 595 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
1413anassrs 471 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
1514ralbidva 3161 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
1615rexbidva 3255 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
1716ralbidv 3162 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵 − 0)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
188, 17bitrd 282 1 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Ⅎwnfc 2936  ∀wral 3106  ∃wrex 3107   class class class wbr 5033  ‘cfv 6329  (class class class)co 7142  ℂcc 10539  0cc0 10541   < clt 10679   − cmin 10874  ℤcz 11986  ℤ≥cuz 12248  ℝ+crp 12394  abscabs 14602   ⇝ cli 14850 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5441  df-so 5442  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-z 11987  df-uz 12249  df-clim 14854 This theorem is referenced by:  etransclem48  43008
 Copyright terms: Public domain W3C validator